Akbas H, Dertlioglu SB, Dilmec F, Balkan M. No association between catalase (CAT) gene polymorphisms and susceptibility to vitiligo in a Turkish population. Clin Ter. 2013;164:e173–7 https://doi.org/10.7417/CT.2013.1564.
CAS
PubMed
Google Scholar
Alam M, Ghosh S. Effect of chemical exposure in induction and evolution of vitiligo: correlation between duration of exposure and disease, site of exposure and onset, and impact upon avoidance. Clini Epidemiol and Global Health. 2017;3:S91–5 https://doi.org/10.1016/j.cegh.2015.10.002.
Article
Google Scholar
Allam M, Riad H. Concise review of recent studies in vitiligo. Qatar Med J. 2013;23:1–19 https://doi.org/10.5339/qmj.2013.10.
Google Scholar
Aly DG, Salem SA, Amr KS, El-Hamid MFA. A study of the association of glutathione S-transferase M1/T1 polymorphisms with susceptibility to vitiligo in Egyptian patients. An Bras Dermatol. 2018;93:54–8 https://doi.org/10.1590/abd1806-4841.20185796.
Article
PubMed
PubMed Central
Google Scholar
Bassiouny DA. Khorshied MM (2012) Glutathione S-transferase M1 and T1 genetic polymorphism in Egyptian patients with nonsegmental vitiligo. Clin Exper Dermatol. 2012;38:160–3 https://doi.org/10.1111/j.1365-2230.2012.04413.x.
Article
Google Scholar
Bonamonte D, Vestita M, Romita P, Filoni A, Foti C, Angelini G. Chemical leukoderma. Dermatitis. 2008;27:90–9 https://doi.org/10.1097/DER.0000000000000167.
Article
CAS
Google Scholar
Boyland E, Chasseaud LF. The role of glutathione and glutathione S-transferases in mercapturic acid biosynthesis. Adv Enzymol Relat Areas Mol Biol. 1969;32:173–219.
CAS
PubMed
Google Scholar
Casp CB, She JX, McCormack WT. Genetic association of the catalase gene (CAT) with vitiligo susceptibility. Pigment Cell Res. 2002;15:62–6.
Article
CAS
PubMed
Google Scholar
Chivers CP. Two cases of occupational leucoderma following contact with hydroquinone monomethyl ether. Br J Ind Med. 1972;29:105–7.
CAS
PubMed
PubMed Central
Google Scholar
Cho HY, Marzec J, Kleeberger SR. Functional polymorphisms in Nrf2: implications for human disease. Free Radic Biol Med. 2015;88:362–72 https://doi.org/10.1016/j.freeradbiomed.2015.06.012.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dahir AM, Thomsen SF. Comorbidities in vitiligo: comprehensive review. Int J Dermatol. 2018;57:1157–64 https://doi.org/10.1111/ijd.14055.
Article
PubMed
Google Scholar
European Agency for Safety and Health at Work. Occupational skin diseases and dermal exposure in the European Union (EU-25): policy and practice overview. 2008; https://publications.europa.eu/en/publication-detail/-/publication/ /6223a874-f907-402f-bf5a-f6f54f537f80
Gauthier Y, Cario Andre M, Taieb A. A critical appraisal of vitiligo etiologic theories. Is melanocyte loss a melanocytorrhagy? Pigment Cell Res. 2003;16:322–32.
Article
PubMed
Google Scholar
Gavalas NG, Akhtar S, Gawkrodger DJ, Watson PF, Weetman AP, Kemp EH. Analysis of allelic variants in the catalase gene in patients with the skin depigmenting disorder vitiligo. Biochem Biophysi Res Commun. 2006;345:1586–91 https://doi.org/10.1016/j.bbrc.2006.05.063.
Article
CAS
Google Scholar
Guan CP, Zhou MN, Xu AE, Kang KF, Liu JF, Wei XD, Li YW, Zhao DK, Hong WS. The susceptibility to vitiligo is associated with NF-E2-related factor2 (Nrf2) gene polymorphisms: a study on Chinese Han population. Exp Dermatol. 2008;17:1059–62 https://doi.org/10.1111/j.1600-0625.2008.00752.x.
Article
CAS
PubMed
Google Scholar
Harris JE. Chemical-induced vitiligo. Dermatol Clin. 2017;35:151–61. https://doi.org/. https://doi.org/10.1016/j.det.2016.11.006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hayes JD, Flanagan JU, Jowsey IR. Glutathione transferases. Annu Rev Pharmacol Toxicol. 2005;45:51–88 https://doi.org/10.1146/annurev.pharmtox.45.120403.095857.
Article
CAS
PubMed
Google Scholar
ILO List of Occupational Diseases, International Labour Conference. Programme on Safety and Health at Work and the Environment (SafeWork) International Labour Office. 2010 http://www.ilo.org/safework
Google Scholar
INAIL report. Dermal diseases and compulsory insurance against work accidents and professional diseases.2010; copyright© INAIL. ISBN 978-88-7484-186-8. www.inail.it
Jalood HH, AL-Rikabi HR, Al-Badran AI, Kawen AA. Glutathione S-transferase (GSTM1, GSTT1) genes polymorphisms associated with vitiligo disease in Thi Qar Province/south of Iraq. Int J Curr Microbiol App Sci. 2016;5(8):156–63 https://doi.org/10.20546/ijcmas.2016.508.017.
Article
CAS
Google Scholar
Jian Z, Li K, Song P, Zhu G, Zhu L, Cui T, Liu B, Tang L, Wang X, Wang G, Gao T, Li C. Impaired activation of the Nrf2-ARE signaling pathway undermines H2O2-induced oxidative stress response: a possible mechanism for melanocyte degeneration in vitiligo. J Invest Dermatol. 2014;134:2221–30 https://doi.org/10.1038/jid.2014.152.
Article
CAS
PubMed
Google Scholar
Karelson M, Silm H, Salum T, Kõks S, Kingo K. Differences between familial and sporadic cases of vitiligo. J Eur Acad Dermatol Venereol. 2012;26:915–8 https://doi.org/10.1111/j.1468-3083.2011.04131.x.
Article
CAS
PubMed
Google Scholar
Kasthurinaidu SP, Ramasamy T, Ayyavoo J, Dave DK, Adroja DA. GST M1-T1 null allele frequency patterns in geographically assorted human populations: a phylogenetic approach. PLoS One. 2015;10:e0118660 https://doi.org/10.1371/journal.pone.0118660.
Article
PubMed
PubMed Central
CAS
Google Scholar
Knight D. Occupational vitiligo in association with australian blackwood dust as a novel risk factor. Curr Allergy Clin Im. 2008;21(3):142–5.
Google Scholar
Kostyuk VA, Potapovich AI, Cesareo E, Brescia S, Guerra L, Valacchi G, Pecorelli A, Deeva IB, Raskovic D, De Luca C, Pastore S, Korkina LG (2010) Dysfunction of glutathione S-transferase leads to excess 4-hydroxy-2-nonenal and H2O2 and impaired cytokine pattern in cultured keratinocytes and blood of vitiligo patients. Antioxid Redox Signal 13: 607-620. https://doi.org/doi: https://doi.org/10.1089/ars.2009.297
Laddha NC, Dwivedi M, Mansuri MS, Gani AR, Ansarullah M, Ramachandran AV, Dalai S, Begum R. Vitiligo: interplay between oxidative stress and immune system. Exp Dermatol. 2013a;22:245–50 https://doi.org/10.1111/exd.12103.
Article
CAS
PubMed
Google Scholar
Laddha NC, Gani AR, Shajil EM, Begum R. Involvement of superoxide dismutase isoenzymes and their genetic variants in progression of and higher susceptibility to vitiligo. Free Rad Biol Med. 2013b;65:1110–25 https://doi.org/10.1016/j.freeradbiomed.2013.08.189.
Article
CAS
PubMed
Google Scholar
Liu L, Li C, Gao J, Li K, Gao L, Gao T. Genetic polymorphisms of glutathione S-transferase and risk of vitiligo in the Chinese population. J Invest Dermatol. 2009;129:2646–52 https://doi.org/10.1038/jid.2009.143.
Article
CAS
PubMed
Google Scholar
Lu L, Wu W, Tu Y, Yang Z, He L, Guo M. association of glutathione S-transferase M1/T1 polymorphisms with susceptibility to vitiligo. Gene. 2014;535:12–6 https://doi.org/10.1016/j.gene.2013.11.024.
Article
CAS
PubMed
Google Scholar
Lv YJ, Liao WJ, Luan Q, Wang H, Wang L, Li Q. The polymorphism of catalase T/C codon 389 in exon 9 and vitiligo susceptibility: a meta-analysis. J Eur Acad Dermatol Venearol. 2011;25:955–8 https://doi.org/10.1111/j.1468-3083.2010.03897.x.
Article
CAS
Google Scholar
Marklund SL, Holme E, Hellner L. Superoxide dismutase in extracellular fluids. Clin Chim Acta. 1982;126:41–51.
Article
CAS
PubMed
Google Scholar
Mehaney DA, Darwish HA, Hegazy RA, Nooh MM, Tawdy AM, Gawdat HI, El-Sawalhi MM. Analysis of oxidative stress status, catalase and catechol-O-methyltransferase polymorphisms in Egyptian vitiligo patients. PLoS One. 2014;9:e99286 https://doi.org/10.1371/journal.pone.0099286.
Article
PubMed
PubMed Central
CAS
Google Scholar
Oliver EA, Schwartz L, Warren LH. Occupational leukoderma. JAMA. 1939;113:927–8.
Article
Google Scholar
Park HH, Ha E, Uhm YK, Jin SY, Kim YJ, Chung JH, Lee MH. Association study between catalase gene polymorphisms and the susceptibility to vitiligo in Korean population. Exp Dermatol. 2006;15:377–80 https://doi.org/10.1111/j.0906-6705.2006.00423.x.
Article
CAS
PubMed
Google Scholar
Park HK, Kim HS. Association between the polymorphism of glutathione S-transferase genes (GSTM1, GSTT1, and GSTP1) and vitiligo: a meta-analysis. Int J Clin Exp Pathol. 2016;9:6617–25.
CAS
Google Scholar
Parsad D, Dogra S, Kanwar AJ. Quality of life in patients with vitiligo. Health Qual Life Outcomes. 2003;1:58. https://doi.org/10.1186/1477-7525-1-58.
Article
PubMed
PubMed Central
Google Scholar
Picardo M, Dell’Anna ML, Ezzedine K, Hamzavi I, Harris JE, Parsad 5 TA. Nat Rev Dis Primers. 2015;1(15011) https://doi.org/10.1038/nrdp.2015.11.
Rahman R, Hasija Y. Exploring vitiligo susceptibility and management: a brief review. Biomedical Dermatol. 2018;2(20) https://doi.org/10.1186/s41702-018-0030-y.
Rodrigues M, Ezzedine K, Hamzavi I, Pandya AG, Harris JE Vitiligo Working Group. New discoveries in the pathogenesis and classification of vitiligo. J Am Acad Dermatol. 2017;77:1–13 https://doi.org/10.1016/j.jaad.2016.10.048.
Article
CAS
PubMed
Google Scholar
Ryberg D, Skaug V, Hewer A, Phillips DH, Harries LW, Wolf CR, Ogreid D, Ulvik A, Vu P, Haugen A. Genotypes of glutathione transferase M1 and P1 and their significance for lung adduct levels and cancer risk. Carcinogenesis. 1997;18:1285–9.
Article
CAS
PubMed
Google Scholar
Salinas AE, Wong MG. Glutathione S-transferases: a review. Curr Med Chem. 1999;6:279–309.
CAS
PubMed
Google Scholar
Schallreuter KU, Gibbons NC, Zothner C, Abou Elloof MM, Wood JM. Hydrogen peroxide-mediated oxidative stress disrupts calcium binding on calmodulin: more evidence for oxidative stress in vitiligo. Biochem Biophys Res Commun. 2007;360:70–5 https://doi.org/0.1016/j.bbrc.2007.05.218.
Article
CAS
PubMed
Google Scholar
Schallreuter KU, Moore J, Wood JM, Beazley WD, Gaze DC, Tobin DJ, Marshall HS, Panske A, Panzig E, Hibberts NA. In vivo and in vitro evidence for hydrogen peroxide (H2O2) accumulation in the epidermis of patients with vitiligo and its successful removal by a UVB-activated pseudocatalase. J Investig Dermatol Symp Proc. 1999;4:91–6.
Article
CAS
PubMed
Google Scholar
Schallreuter KU, Wood JM, Berger J. Low catalase level in the epidermis in patients with vitiligo. J Invest Dermatol. 1991;97:1081–5.
Article
CAS
PubMed
Google Scholar
Shajil EM, Naresh CL, Sreejatha C, Amina RG, Reem A, Malek BJ, Bela JS, Rasheedunnisa B. Association of catalase T/C exon 9 and glutathione peroxidase codon 200 polymorphisms in relation to their activities and oxidative stress with vitiligo susceptibility in Gujarat population. Pigment Cell Res. 2007;20:405–7 https://doi.org/10.1111/j.1600-0749.2007.00406.x.
Article
CAS
Google Scholar
Shalbaf M, Gibbons NC, Wood JM, Maitland DJ, Rokos H, Elwary SM, Marles LK, Schallreuter KU. Presence of epidermal allantoin further supports oxidative stress in vitiligo. Exp Dermatol. 2008;17:761–70 https://doi.org/0.1111/j.1600-0625.2008.00697.x.
Article
CAS
PubMed
Google Scholar
Shen C, et al. Frontiers in genetics. 2016;7:1–12 https://doi.org/10.3389/fgene.2016.00003.
Article
CAS
Google Scholar
Song Pu, Li K, Liu L, Wang X, Jian Z, Zhang W, Wang G, Li C, Gao. Genetic polymorphism of the Nrf2 promoter region is associated with vitiligo risk in Han Chinese populations. J Cell Mol Med 2016; 20:1840-1850. https://doi.org/10.1111/jcmm.12874
Article
CAS
PubMed
PubMed Central
Google Scholar
Strange RC, Jones PW, Fryer AA. Glutathione S-transferase: genetics and role in toxicology. Toxicol Lett. 2000;112-113:357–63.
Article
CAS
PubMed
Google Scholar
Taieb A. Intrinsic and extrinsic pathomechanisms in vitiligo. Pigment Cell Res Suppl. 2000;8:41–7.
Article
Google Scholar
Tuna A, Ozturk G, Gerceker TB, Karaca E, Onay H, Guvenc SM, Cogulu O. Superoxide dismutase 1 and 2 gene polymorphism in Turkish vitiligo patients. Balkan J Med Genet. 2017;20:67–74 https://doi.org/10.1515/bjmg-2017-0033.
Article
PubMed Central
CAS
Google Scholar
Wu MM, Chiou HY, Lee TC, Chen CL, Hsu LI, Wang YH, Huang WL, Hsieh YC, Yang TY, Lee CY, Yip PK, Wang CH, Hsueh YM, Chen CJ. GT-repeat polymorphism in the heme oxygenase-1 gene promoter and the risk of carotid atherosclerosis related to arsenic exposure. J Biomed Sci. 2010;17:70 https://doi.org/10.1186/1423-0127-17-70.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhu H, Itoh K, Yamamoto M, Zweier JL, Li Y. Role of Nrf2 signaling in regulation of antioxidants and phase 2 enzymes in cardiac fibroblasts: protection against reactive oxygen and nitrogen species-induced cell injury. FEBS Lett. 2005;579:3029–36 https://doi.org/0.1016/j.febslet.2005.04.058.
Article
CAS
PubMed
Google Scholar