Ciechanover A. The ubiquitin proteolytic system: from a vague idea, through basic mechanisms, and onto human diseases and drug targeting. Neurology. 2006;66(Suppl 1):7–19.
Article
Google Scholar
Cogen AL, Walker SL, Roberts CH, Hagge DA, Neupane KD, Khadge S, et al. Human beta-defensin 3 is up-regulated in cutaneous leprosy type 1 reactions. PLoS Negl Trop Dis. 2012;6:e1869.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cole ST, Eiglmeier K, Parkhill J, James KD, Thomson NR, Wheeler PR, et al. Massive gene decay in the leprosy bacillus. Nature. 2001;409:1007–11.
Article
CAS
PubMed
Google Scholar
Fulco TO, Lopes UG, Sarno EN, Sampaio EP, Saliba AM. The proteasome function is required for mycobacterium leprae-induced apoptosis and cytokine secretion. Immunol Lett. 2007;110:82–5.
Article
PubMed
Google Scholar
Jacobson RR, Krahenbuhl JL. Leprosy. Lancet. 1999;353:655–60.
Article
CAS
PubMed
Google Scholar
Kirchheimer WF, Storrs EE. Attempts to establish the armadillo (Dasypus novemcinctus Linn.) as a model for the study of leprosy. I. Report of lepromatoid leprosy in an experimentally infected armadillo. Int J Lepr Other Mycobact Dis. 1971;39:693–702.
CAS
PubMed
Google Scholar
Lahat N, Rahat MA, Ballan M, Weiss-Cerem L, Engelmayer M, Bitterman H. Hypoxia reduces CD80 expression on monocytes but enhances their LPS-stimulated TNF-alpha secretion. J Leukoc Biol. 2003;74:197–205.
Article
CAS
PubMed
Google Scholar
Liu PT, Stenger S, Li H, Wenzel L, Tan BH, Krutzik SR, et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science. 2006;311:1770–3.
Article
CAS
PubMed
Google Scholar
Liu PT, Wheelwright M, Teles R, Komisopoulou E, Edfeldt K, Ferguson B, et al. MicroRNA-21 targets the vitamin D-dependent antimicrobial pathway in leprosy. Nat Med. 2012;18:267–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lyrio EC, Campos-Souza IC, Corrêa LC, Lechuga GC, Verícimo M, Castro HC, et al. Interaction of Mycobacterium leprae with the HaCaT human keratinocyte cell line: new frontiers in the cellular immunology of leprosy. Exp Dermatol. 2015;24:536–42.
Article
CAS
PubMed
Google Scholar
Makino M, Maeda Y, Mukai T, Kaufmann SH. Impaired maturation and function of dendritic cells by mycobacteria through IL-1beta. Eur J Immunol. 2006;36:1443–52.
Article
CAS
PubMed
Google Scholar
Mira MT, Alcaïs A, Nguyen VT, Moraes MO, Di Flumeri C, HT V, et al. Susceptibility to leprosy is associated with PARK2 and PACRG. Nature. 2004;427:636–40.
Article
CAS
PubMed
Google Scholar
Modlin RL. Th1-Th2 paradigm: insights from leprosy. J Invest Dermatol. 1994;102:828–32.
Article
CAS
PubMed
Google Scholar
Moody DB, Sugita M, Peters PJ, Brenner MB, Porcelli SA. The CD1-restricted T-cell response to mycobacteria. Res Immunol. 1996;147:550–9.
Article
CAS
PubMed
Google Scholar
Mutis T, De Bueger M, Bakker A, Ottenhoff THHLA. Class II+ human keratinocytes present Mycobacterium leprae antigens to CD4+ Th1-like cells. Scand J Immunol. 1993;37:43–51.
Article
CAS
PubMed
Google Scholar
Nath I, Saini C, Valluri VL. Immunology of leprosy and diagnostic challenges. Clin Dermatol. 2015;33:90–8.
Article
PubMed
Google Scholar
Netea MG, Kullberg BJ, van der Meer JW. Genomewide association study of leprosy. N Engl J Med. 2010;362:1447–8.
CAS
PubMed
Google Scholar
Nickoloff BJ, Turka LA, Mitra RS, Nestle FO. Direct and indirect control of T-cell activation by keratinocytes. J Invest Dermatol. 1995;105(Suppl1):25–9.
Article
Google Scholar
Okada S, Komura J, Nishiura M. Mycobacterium leprae found in epidermal cells by electron microscopy. Int J Lepr Other Mycobact Dis. 1978;46:30–4.
CAS
PubMed
Google Scholar
Pivarcsi A, Nagy I, Kemeny L. Innate immunity in the skin: how keratinocytes fight against pathogens. Curr Immunol Rev. 2005;1:29–42.
Article
CAS
Google Scholar
Polycarpou A, Walker SL, Lockwood DN. New findings in the pathogenesis of leprosy and implications for the management of leprosy. Curr Opin Infect Dis. 2013;26:413–9.
CAS
PubMed
Google Scholar
Rea TH, Shen JY, Modlin RL. Epidermal keratinocyte Ia expression, Langerhans cell hyperplasia and lymphocytic infiltration in skin lesions of leprosy. Clin Exp Immunol. 1986;65:253–9.
CAS
PubMed
PubMed Central
Google Scholar
Ridley DS, Jopling WH. Classification of leprosy according to immunity. A five-group system. Int J Lepr Other Mycobact Dis. 1966;34:255–73.
CAS
PubMed
Google Scholar
Roy S, Frodsham A, Saha B, Hazra SK, Mascie-Taylor CG, Hill AV. Association of vitamin D receptor genotype with leprosy type. J Infect Dis. 1999;179:187–91.
Article
CAS
PubMed
Google Scholar
Salgame P, Abrams JS, Clayberger C, Goldstein H, Convit J, Modlin RL, et al. Differing lymphokine profiles of functional subsets of human CD4 and CD8 T cell clones. Science. 1991;254:279–82.
Article
CAS
PubMed
Google Scholar
Santos DO, Santos SL, Esquenazi D, Nery JA, Defruyt M, Lorré K, et al. Evaluation of B7-1 (CD80) and B7-2 (CD86) costimulatory molecules and dendritic cells on the immune response in leprosy. Nihon Hansenbyo Gakkai Zasshi. 2001;70:15–24.
Article
CAS
PubMed
Google Scholar
Sasaki S, Takeshita F, Okuda K, Ishii N. Mycobacterium leprae and leprosy: a compendium. Microbiol Immunol. 2001;45:729–36.
Article
CAS
PubMed
Google Scholar
Satapathy J, Kar BR, Job CK. Presence of mycobacterium leprae in epidermal cells of lepromatous skin and its significance. Indian J Dermatol Venereol Leprol. 2005;71:267–9.
Article
PubMed
Google Scholar
Schlesinger LS, Horwitz MA. Phenolic glycolipid-1 of Mycobacterium leprae binds complement component C3 in serum and mediates phagocytosis by human monocytes. J Exp Med. 1991;174:1031–8.
Article
CAS
PubMed
Google Scholar
Seo VH, Cho W, Choi HY, Hah YM, Cho SN. Mycobacterium leprae in the epidermis: ultrastructural study I. Int J Lepr Other Mycobact Dis. 1995;63:101–4.
CAS
PubMed
Google Scholar
Shepard CC. The experimental disease that follows the injection of human leprosy bacilli into foot-pads of mice. J Exp Med. 1960;112:445–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tapinos N, Ohnishi M, Rambukkana A. ErbB2 receptor tyrosine kinase signaling mediates early demyelination induced by leprosy bacilli. Nat Med. 2006;12:961–6.
Article
CAS
PubMed
Google Scholar
Teles RM, Graeber TG, Krutzik SR, Montoya D, Schenk M, Lee DJ, et al. Type I interferon suppresses type II interferon-triggered human anti-mycobacterial responses. Science. 2013;339:1448–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tohyama M, Shirakara Y, Yamasaki K, Sayama K, Hashimoto K. Differentiated keratinocytes are responsible for TNF-alpha regulated production of macrophage inflammatory protein 3alpha/CCL20, a potent chemokine for Langerhans cells. J Dermatol Sci. 2001;27:130–9.
Article
CAS
PubMed
Google Scholar
Walker SL, Lockwood DN. The clinical and immunological features of leprosy. Br Med Bull. 2006;77–78:103–21.
Article
PubMed
Google Scholar
World Health Organization. WHO expert committee on leprosy. World Health Organ Tech Rep Ser. 2012;968:1–61.
Google Scholar
Yamamura M, Uyemura K, Deans RJ, Weinberg K, Rea TH, Bloom BR, et al. Defining protective responses to pathogens: cytokine profiles in leprosy lesions. Science. 1991;254:277–9.
Article
CAS
PubMed
Google Scholar
Yang D, Chertov O, Bykovskaia SN, Chen Q, Buffo MJ, Shogan J, et al. Beta-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science. 1999;286:525–8.
Article
CAS
PubMed
Google Scholar