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Importance of the immune response
to Mycobacterium leprae in the skin

Song-Hyo Jin1, Kyu Joong Ahn2 and Sungkwan An3*
Abstract

The causative agent of leprosy is Mycobacterium leprae (M. leprae), which establishes infectious lesions in the skin.
Leprosy is classified based on the clinical manifestation, the host’s immune response and skin symptoms. M. leprae is an
intracellular pathogen that invades keratinocytes, macrophages, dendritic cells and Schwann cells and replicates within
these cells. M. leprae-infected keratinocytes secrete various cytokines and chemokines and induce highly effective
immune responses. Understanding the mechanisms by which M. leprae establishes an infection within the skin and the
associated immune response may be of great help in the early detection and treatment of the disease.
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Background
Leprosy is a chronic granulomatous infection caused
by an intracellular organism, Mycobacterium leprae
(M. leprae), which primarily affects the skin and per-
ipheral nerves (Walker and Lockwood 2006). M.
leprae is a unique type of bacteria as it has a long
generation time and does not grow on an artificial
medium. In addition, M. leprae is 0.3−7.0 μm in size
and is an exclusively intracellular parasite that grows
extremely slowly with a generation time of 12−14 days
(Sasaki et al. 2001). The most striking feature of the
M. leprae genome is the extensive deletion and inacti-
vation of genes, referred to as gene degradation (Cole
et al. 2001). These characteristics of the M. leprae
genome can explain its slow growth and failure to
proliferate in synthetic media. The human genomes
PARK2 and PACRG are associated with increased sus-
ceptibility to leprosy or more severe forms of leprosy.
The host’s immune system affects the clinical mani-

festation of leprosy. Strong cell-mediated immunity and
low humoral immunity characterise the response to tu-
berculoid (TT) leprosy, whereas in lepromatous (LL)
leprosy, the opposite is observed. Leprosy can be classi-
fied more precisely in an immunological context based
on skin findings, motor and sensory changes and biopsy
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findings as indeterminate (I), TT, borderline tuberculoid
(BT), mid-borderline (BB), borderline lepromatous (BL)
and LL (Jacobson and Krahenbuhl 1999). In addition, M.
leprae invades and survives within macrophages, dendritic
cells and Schwann cells. Interleukin 2 (IL-2) and inter-
feron gamma (IFN-γ) are markedly dominant in TT
lesions, whereas IL-4, IL-5 and IL-10 are characteristic of
LL lesions (Salgame et al. 1991; Yamamura et al. 1991).
Leprosy is a disease that manifests as skin lesions, and

keratinocytes and the epidermis play an important role in
the innate immune response to M. leprae (Lyrio et al.
2015). Moreover, while some evidence indicates a role for
dendritic cells (DCs) in the immune response to M. leprae
(Santos et al. 2001), another cell type important for epi-
dermal defence, the keratinocyte, is also a source of cyto-
kines and chemokines, which are critical for recruiting
DCs, T cells and neutrophils to the site of infection (Lyrio
et al. 2015). In addition, human keratinocytes have been
shown to phagocytose M. leprae in vitro and subsequently
exhibit changes in the expression of surface molecules and
cathelicidin as well as secrete tumour necrosis factor
(TNF)-α and IL-1β (Lyrio et al. 2015). In addition, the in-
vasion of keratinocytes and the secretion of cytokines and
chemokines by immune cells were reported. This suggests
that keratinocytes play an important role in the immune
response to an infection with M. leprae.
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Pathophysiology of leprosy
M. leprae is an intracellular parasitic pathogen, and at-
tempts to cultivate in artificial medium have failed since
1874 when it was first identified by Armauer Hansen
(Walker and Lockwood 2006). In addition, it multiplies ex-
tensively in the footpads of nude mice (Shepard 1960),
nine-banded armadillos (Kirchheimer and Storrs 1971) and,
to a limited extent, in the footpads of normal mice (Sasaki
et al. 2001). M. leprae bacilli are 0.3−0.4 × 4.0−7.0 μm in
size and multiplies very slowly, with a generation time of
12–14 days. Optimal growth occurs at approximately 30 °C;
hence, M. leprae prefers the cooler areas of the human
body. The cell wall is gram-positive and highly complex
and contains proteins, phenolic glycolipids, arabinoglycan,
peptidoglycan and mycolic acid (Sasaki et al. 2001).
The host’s immune system affects the clinical mani-

festation of leprosy. Strong cell-mediated immunity and
low humoral immunity characterises the response to TT
leprosy, whereas the opposite is observed in cases of LL
leprosy (Jacobson and Krahenbuhl 1999).
The most striking feature of the M. leprae genome is

the extensive deletion and inactivation of genes, referred
to as gene degradation; only 49.5% of the genome contains
protein-coding genes and 27% contains recognisable pseu-
dogenes (inactive reading frames with functional counter-
parts in the tuberculosis bacillus). Moreover, an analysis of
the genomic sequence revealed that the genes encoding
various enzymes have been replaced by pseudogenes,
which suggests limited metabolic activity of M. leprae
(Cole et al. 2001). This genomic feature might correspond
to its unique bacteriological characteristics, including its
exceptionally slow growth rate and failure to multiply in
synthetic media (Sasaki et al. 2001).
There are various genes and regions of the human gen-

ome that have been associated with susceptibility to lep-
rosy or more severe forms of the disease (Walker and
Lockwood 2006). For example, Mira et al. (Mira et al.
2004) identified certain alleles in the PARK2 and PACRG
region of chromosome 6 to be associated with susceptibil-
ity to leprosy in Vietnamese and Brazilian cohorts. More-
over, PARK2 is expressed by both Schwann cells and
macrophages. It is an ubiquitination E3 ligase involved in
the delivery of polyubiquitinated proteins to the prote-
asome complex for protein degradation (Ciechanover
2006). An Indian cohort demonstrated that homozygotes
expressing different alleles of the vitamin D receptor
(VDR) gene were associated with either TT or LL leprosy
(Roy et al. 1999). In addition, the upregulation of the VDR
gene on macrophages is associated with enhanced intra-
cellular killing of M. tuberculosis (Liu et al. 2006).

Classification of leprosy
Leprosy is classified according to the WHO guidelines
(World Health Organization 2012). Patients with only
one skin lesion are categorised as a single lesion pauci-
bacillary; however, paucibacillary leprosy is defined as
five or fewer skin lesions without bacilli in the skin
smears. Multibacillary denotes more than six lesions and
may be skin smear positive. TT leprosy is characterised
by a minor loss of nerve, the presence of few bacilli and
strong cell-mediated immunity (i.e. IFN-γ and IL-2) and
weak humoral immunity. In contrast, LL leprosy induces
strong bacterial immunity (i.e. IFN-beta, IL-4 and IL-10)
and cell-mediated immunity exhibited by a wide range
of lesions, multiple bacteria as well as lesions with exten-
sive skin and nerve involvement.

TT
In TT, patients have one or two larger macular hypo-
pigmented or erythematous anaesthetic lesions that
have a well-defined and often raised margin or appear
as scaly plaques (Jacobson and Krahenbuhl 1999). The
first type of lesion is a macule that has erythema or
hypochloremesis and has a dry, hairless surface and a
well-defined outer edge and sensory damage. Foci of
well-developed epithelioid cells, with or without Lan-
ghans giant cells, are encompassed by a zone of dense
lymphocyte infiltration. The granuloma, which extends
up to the epidermis, is without an intervening clear
zone (Ridley and Jopling 1966).

BT
In BT, the macules or plaques resemble TT leprosy in
appearance and sensory loss but can be differentiated
by the fact that they have a smaller average size, are
more numerous, the surface is less dry, the outer edges
are less defined, hair growth is less affected and nerves
are thickened. The cytology and composition of the
granuloma are typically indistinguishable from those of
TT. The most distinguishing characteristic is the pres-
ence of a clear subepidermal zone; however, it is very
narrow. Moreover, the granulomas can be distinguished
from BB based on epithelial cell focalization near the
peripheral lymphocyte region or occasionally by the
presence of Langhans giant cells. The nerve bundles
within the granuloma are generally grossly swollen and
infiltrated, and innervation is greatly diminished (Ridley
and Jopling 1966).

BB
In cases of BB, the lesion size and number is between
that of TT and LL, moderate anaesthesia and exhibits a
typical ‘punched-out’ or ‘hole-in-cheese’ appearance. The
essential defining characteristic is the presence of epithe-
lial cells diffused throughout the granuloma and not by
the lymphocyte zone. The epithelial cells are well-
developed but generally not as large as those in TT lep-
rosy. BB lesions contain no Langhans giant cells, and if
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lymphocytes are present, they are highly diffuse. In
addition, the nerve bundles exhibit moderate Schwann
cell proliferation but they are usually recognisable with-
out much difficulty (Ridley and Jopling 1966).

BL
BL lesions tend to be numerous and particularly macular
and consist of lacerations, papules and nodules. There
are two types of BL leprosy: (1) granulomas that consist
of histiocytic cells that cannot be classified as epithelial
cells but tend to evolve into epithelial cells and (2) the
M. leprae host cells that consist of histiocytes that tend
to exhibit foamy changes; however, they do not produce
large globes. The granulomas can be distinguished from
LL granulomas by the presence of dense lymphocytic in-
filtration (Ridley and Jopling 1966).

LL
LL lesions typically consist of erythematous macules,
papules and/or nodules, which are widespread and can
occasionally become diffuse without defined lesions. In
addition, the lesions may appear similar to TT but with
more BT and BL characteristics. Sensory and/or motor
loss usually occurs in the nerves near TT lesions but
may be more prevalent in BL and LL leprosy. In
addition, nerve damage is a common form of sensory
loss and occurs at the final stages of LL leprosy. The
ulnar and median (clawed hands), the common peroneal
(foot drop), the posterior tibial (claw toes and plantar in-
sensitivity) and the facial, radial cutaneous and great aur-
icular nerves are involved. Occasionally, progressive
multibacillary LL leprosy can result in the loss of the
eyebrows and eyelashes, nasal septal perforation with a
collapsed nose and hoarseness (Jacobson and Krahen-
buhl 1999). Moreover, the granuloma is composed of
histiocytes that exhibit a varying degree of fatty changes,
characterised by the production of foam cells and globi.
Numerous globi or heavy foamy changes are only found
in LL leprosy. Lymphocytes are usually deficient and dif-
fuse if they are present. Nerves can show structural
damage but do not exhibit cell penetration or cuffing
(Ridley and Jopling 1966).

Immunology of leprosy
Leprosy exhibits a wide variety of clinical features that
are dependent on the host’s immune response and has
an apparent polarity in the form of TT and LL leprosy.
The major defence against M. leprae is achieved by cell-
mediated immunity, and the outcome of the infection
depends on how the host responds to the infection
(Modlin 1994).
M. leprae invades and survives within macrophages,

DCs and Schwann cells. Entry into the host cell is the
first step in the intracellular lifecycle of M. leprae, which
is achieved via several different methods. In particular, the
phenolic glycolipid 1 (PGL 1) expressed on the cell wall of
M. leprae is recognised by complement, and the comple-
ment receptor (CR) 1, CR 3 and CR 4 assist in phagocyt-
osis of the bacilli (Schlesinger and Horwitz 1991). Host
cells recognise many pathogens through general molecular
pattern recognition; however, the complement and toll-
like receptors (TLRs) expressed on macrophages and DCs
are important for the recognition of microbial, including
mycobacterial, pathogens (Nath et al. 2015).
IL-2 and IFN-γ are markedly dominant in TT lesions,

whereas IL-4, IL-5 and IL-I0 are characteristic of LL
lesions (Salgame et al. 1991; Yamamura et al. 1991).
Moreover, the T helper type 1 (Th1) subset, charac-
terised by the predominant secretion of IL-2 and IFN-γ,
preferentially elicits cell-mediated immunity, whereas
Th2 cells, which produce IL-4, IL-5 and IL-10, augment
the humoral immune response. Both the classic recipro-
cal relationship between antibody production and cell-
mediated immunity and the resistance or susceptibility
to M. leprae can be explained by T cell subsets differing
in the pattern of cytokine production (Sasaki et al.
2001). The mechanism of T cell activation in response to
mycobacteria is highlighted by the CD1-mediated lipid
antigen presentation pathway (Moody et al. 1996) as it
represents an aspect of host defence independent of clas-
sical peptide antigen presentation via major histocompati-
bility complex (MHC) molecules (Sasaki et al. 2001).
M. leprae activates TLR2 and TLR1 in Schwann cells,

which specifically leads to TT leprosy. Although this
cell-mediated immune response is most active in TT
leprosy, it can also activate apoptosis genes and conse-
quently cause nerve damage in cases of TT leprosy. In
addition, the alpha-2 laminin receptors found in the
basal lamina of Schwann cells are also an entry target
for M. leprae in these cells, while the activation of the
ErbB2 receptor tyrosine kinase signalling pathway has
been identified as a mediator of demyelination in leprosy
(Tapinos et al. 2006). The activation of macrophages and
DCs, which are antigen-presenting cells, is associated
with the initiation of the host immune response to M
leprae. Moreover, IL-1β produced by antigen-presenting
cells has been shown to impair the maturation and
function of DCs (Makino et al. 2006). Another mechan-
ism is the ubiquitin-proteasome pathway, which causes
immune cell death and tumour necrosis factor (TNF)-α/
IL-10 secretion (Fulco TO et al. 2007). Vitamin D can
contribute to the intrinsic response through the produc-
tion of antimicrobial peptides and is differentially
expressed in TT leprosy compared to that in LL leprosy.
On the other hand, IL-10 can induce phagocytosis. In
addition, it has been shown that IL-15 induced the vita-
min D antimicrobial pathway and decreased phagocyt-
osis (Nath et al. 2015). While TT leprosy is the result of
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a high cell-mediated immunity with a Th1-type immune
response, LL leprosy is characterised by a low level of
cellular immunity due to an increased humoral Th2 re-
sponse (Modlin 1994). Because M. leprae is present in
the skin, nerve tissue and endothelium of the nasal mu-
cosa, it is thought that endothelial cells contribute to the
pathogenesis of leprosy.

Keratinocytes and leprosy
Keratinocytes express mannose-binding receptors
(KCMR), TLRs and Class II MHC antigens and have
also been identified as a source of cytokines, chemo-
kines and antimicrobial peptides. In addition, keratino-
cytes may play an important role in leprosy by
participating in the epidermal immune response to M.
leprae (Mutis et al. 1993). Thus, this cell type possesses
a highly sophisticated innate pattern recognition
system in which the simultaneous recognition of a
pathogen by different classes of pattern recognition re-
ceptors can provide a specific immune response or, in
the case of commensals, a lack of a response to micro-
organisms (Lyrio et al. 2015). Furthermore, keratino-
cytes can distinguish between pathogenic and
commensal microorganisms (Pivarcsi et al. 2005). In
skin biopsy sections obtained from an LL leprosy pa-
tient, M. leprae were found in macrophages as well as
in smooth muscle cells and keratinocytes, suggesting
that the skin is a potential route of leprosy transmis-
sion (Satapathy et al. 2005). Keratinocytes also spon-
taneously express CD80 (B7–1) on their surface. A
reduction of CD80 surface expression also occurs on
monocytes after LPS exposure during hypoxia (Lahat
et al. 2003). Moreover, Nickoloff et al. reported that
keratinocytes can regulate T cells through both cyto-
kine expression and CD80 and CD28 interactions
(Nickoloff et al. 1995).
It has been established that epidermal keratinocytes

express human beta-defensin (HBD) 2 and that this
expression is upregulated by TNF-α stimulation (Yang
et al. 1999). TNF-α induces MIP-3α in human keratino-
cytes and recruits Langerhans cells to the epidermis
(Tohyama et al. 2001). Additionally, TNF-α has a syner-
gistic effect on Th1 pattern maintenance as IFN-γ in
synergy with TNF-α activates infected macrophages. As
a result, it induces a major effect on cell-mediated
immunity (Tohyama et al. 2001). Most recently, Cogen
et al. have demonstrated that M. leprae induced HBD 2
and 3 in keratinocytes but not in macrophages (Cogen
et al. 2012).
Okada et al. suggested that M. leprae can be phagocy-

tosed by keratinocytes (Okada et al. 1978). Epidermal
changes, Ia (HLA-DR) expression on keratinocytes,
Langerhans cell (LC) hyperplasia and lymphocyte infil-
tration were identified in the skin lesions of leprosy
patients (Rea et al. 1986). Seo et al. reported that the ba-
cilli are located within typical epidermal cells, which ex-
hibit tonofilaments and melanosomes in their cytoplasm
as well as desmosomes at the junction of each of the
cells (Seo et al. 1995). Human keratinocytes have been
shown to phagocytose M. leprae in vitro, which induces
changes in the expression of various surface molecules
and cathelicidin as well as the secretion of TNF-α and
IL-1β by these cells (Lyrio et al. 2015). Cytokines and
chemokines derived from keratinocytes are important
for the mobilisation of LCs, DCs, T cells and neutrophils
to the site of infection, where they can mediate microbial
killing and initiate a more efficient immune response
against M. leprae.

Conclusions
Leprosy exhibits a wide variety of clinical features
depending on the host’s immune response and has
an apparent polarity in the form of TT and LL lep-
rosy. A majority of individuals do not develop lep-
rosy or become infected following regular exposure.
Those who have a latent M. leprae infection for years
may have only single lesions, which is often self-
healing. If the lesion does not self-heal and the single
lesion is not treated, the disease can progress to the
paucibacillary or multibacillary stage (Jacobson and
Krahenbuhl 1999).
Research to uncover new targets for the early detec-

tion and treatment of an M. leprae infection should con-
tinue to gain insight into the pathophysiology of leprosy.
The most recent studies have included interferon (Teles
et al. 2013), vitamin D-dependent antimicrobial path-
ways (Liu et al. 2012), NOD2-mediated signalling (Netea
et al. 2010) and the role of T regulatory cells, Th-17/IL-
17a/IL-17F cytokines, CD163 and galectin-3 (Polycarpou
et al. 2013). A deeper understanding of the M. leprae
genome will provide insight into the mechanism by
which this organism avoids immune surveillance.
M. leprae invades the skin and peripheral nerves, caus-

ing leprosy. Thus, the skin epithelial cells and keratino-
cytes are important in the innate immune response
towards this bacterium. Because keratinocytes express
mannose-binding receptors (KCMR), TLRs and Class II
MHC antigens as well as produce cytokines, chemokines
and antimicrobial peptides, they may play an important
role and participate in the epidermal immune response
to M. leprae (Mutis et al. 1993). It has been demon-
strated in vitro that human keratinocytes can phagocyt-
ose M. leprae and subsequently exhibit the expression of
the surface molecules CD80, CD209 and cathelicidin as
well as secrete TNF-α and IL-1β (Lyrio et al. 2015). M.
leprae induces the production of cytokines and chemo-
kines in keratinocytes, which mediates mycobacterial
killing and results in a more efficient immune response
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that is important for the recruitment of LCs, DCs, T
cells and neutrophils. Because keratinocytes play an im-
portant role in the immune response against mycobac-
teria, we will present basic data for the early detection
and treatment of leprosy by studying the interaction be-
tween keratinocytes and M. leprae.
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