REVIEW Open Access

Advances in research on the active constituents and physiological effects of *Ganoderma lucidum*

Yunli Yang¹, Huina Zhang¹, Jinhui Zuo¹, Xiaoyan Gong¹, Fan Yi¹, Wanshan Zhu² and Li Li^{1*}

Abstract

Background: Ganoderma lucidum, a double-walled basidiospore produced by porous basidiomycete fungi, has been used as a traditional medicine for thousands of years. It is considered a valuable Chinese medicine for strengthening body resistance, invigorating the spleen, and replenishing Qi. G. lucidum contains a variety of active ingredients, such as polysaccharides, triterpenoids, nucleosides, sterols, alkaloids, polypeptides, fatty acids, steroids, and inorganic elements, and has anticancer, anti-inflammatory, hepatoprotection, hypoglycemic, anti-melanogenesis, anti-aging, and skin barrier-repairing activity.

Conclusions: The review summarizes the traditional usages, distribution, active constituents, structure, and biological effects of *G. lucidum*, with an aim to offer directions for further research and better usage of *G. lucidum* as a medicinal raw material.

Keywords: Ganoderma lucidum, Traditional uses, Polysaccharides, Triterpenoids, Natural products, Pharmacological effect

Background

Ganoderma lucidum is an annual or perennial fungus of the family Ganodermataceae (Campos Ziegenbein et al. 2006); it is commonly known as "Ling Zhi" in China. In the wild, G. lucidum mainly grows in subtropical and temperate climate regions such as Asia, Europe, Africa, and Americas (Siwulski et al. 2015). G. lucidum has a kidney-shaped cap and its upper surface is russet, with a cloud-like, ring pattern, glossy exterior, and woody texture.

G. lucidum has a systematic theoretical background in traditional Chinese medicine, and research has now confirmed that it contains over 400 bioactive compounds, including polysaccharides, triterpenoids, steroids, fatty acids, amino acids, nucleosides, proteins, and alkaloids (Cör et al. 2018). Polysaccharides and triterpenoids are the major bioactive compounds in G. lucidum. The active ingredients and relative pharmacological activities differ during the different growth stages of G. lucidum. Modern pharmacology has shown that G. lucidum has antitumor (Kao et al. 2016), anti-inflammatory (Liu et al.

G. lucidum plays a role in inhibiting tyrosinase activity and tyrosine-related protein expression, and thus, it may ameliorate pigmentation effect (Zhang et al. 2011). It can also anti-aging by inhibiting ultraviolet B (UVB)-induced matrix metalloproteinase (MMP)-1 expression and increasing procollagen expression (Lee et al. 2018). G. lucidum also has a marked ability to scavenge free radicals in vivo.

In this review, the traditional pharmacological uses, distribution, main chemical constituents, and pharmacological effects of *G. lucidum* have been summarized. Furthermore, the application of *G. lucidum* in clinic was prospected with an aim to provide references for further development of *G. lucidum*-based resources.

¹Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing 100048, China Full list of author information is available at the end of the article

^{2018),} and antioxidation effects (Sarnthima et al. 2017) and that it could regulate the respiratory, nervous, and immune systems (Kubota et al. 2018). *G. lucidum* also has a hypoglycemic effect (Tian et al. 2018) and can protect the liver (Wu et al. 2016). Nowadays, *G. lucidum* is used as a powder, tea, and dietary supplement. Therefore, it is extremely significant to study the pharmacological effects and safety of *G. lucidum*.

^{*} Correspondence: Lili2212@163.com

Yang et al. Biomedical Dermatology (2019) 3:6 Page 2 of 17

Distribution and cultivation of G. lucidum

Distribution of G. lucidum

G. lucidum, a medical fungus, grows in subtropical and temperate climate regions such as Asia, Europe, Africa, and Americas in the wild (Siwulski et al. 2015). In Asia, G. lucidum mainly grows in China, Korea, and Japan. In Europe, it is distributed in Sweden, Denmark, and Poland. G. lucidum is distributed in Kenya, Tanzania, and Ghana in Africa (Wang et al. 2012). In China, G. lucidum grows in the regions around Yangtze and Yellow rivers (Chen and Li 2004). It originated from the Dabie Mountains, which recorded in Compendium of Materia Medica.

Cultivation of G. lucidum

Owing to the varying quality of *G. lucidum* in the wild and the increasing demand for it in the food service, pharmaceutical, cosmetics, and health product industries, cultivation has become a major source of the mushroom. Different active substances have been extracted from the fruiting bodies, mycelia, and spores of *G. lucidum*. The fruiting bodies of *G. lucidum* have been commonly cultivated on hardwood logs, stumps, and sawdust (Cilerdzic et al. 2018). Artificial cultivation of *G. lucidum* takes a long time, and its quality is susceptible to environmental conditions. Liquid- and solid-state fermentation are popular for the production of mycelia (Zhou et al. 2012), and the secondary metabolites of *G. lucidum* can be obtained quickly by fermentation technology.

Traditional uses of G. lucidum in China

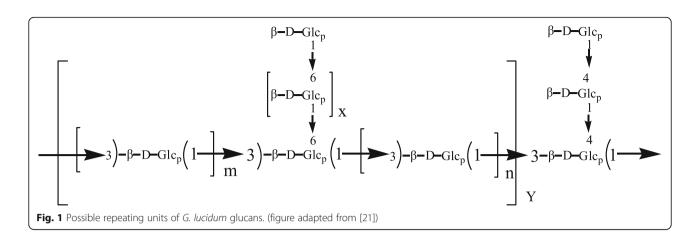
According to the colors of the fruiting bodies, G. lucidum can be classified into red, black, blue, white, yellow, and purple Reishi, and red Reishi (G. lucidum) has shown the most significant health-enhancing effects (Cör et al. 2018). G. lucidum has been extensively used as a traditional medicine to promote health and longevity in China. In traditional Chinese medicine, G. lucidum is regarded as a valuable for strengthening body resistance, invigorating the spleen, and replenishing Qi. G. lucidum was first recognized more than 2400 years ago in Shen Nong's Materia Medica, and the book records that G. lucidum can improve eyesight, nourish liver qi, improve vital essence, and strengthen bones and muscles. Further, in Compendium of Materia Medica, G. lucidum has been recorded as being able to preserve the spirit and longevity. Modern studies have shown that G. lucidum polysaccharides (GLPs) and Ganoderma triterpenoids (GTs) which improve immunity and exert antiaging effects are the main contributors to the traditional pharmacological activities of G. lucidum. G. lucidum has been included in the Chinese Pharmacopoeia and in the American Herbal Pharmacopoeia and Therapeutic Compendium (Hapuarachchi et al. 2018).

Active compounds of G. lucidum

Modern studies have shown that *G. lucidum* contains many active compounds, including triterpenoids, polysaccharides, steroids, fatty acids, amino acids, nucleosides, proteins, and alkaloids. The triterpenoids and polysaccharides have attracted considerable attention because of their high content in the fungus, diverse structures, and significant bioactivities.

Polysaccharides

Polysaccharides are extracted from the mycelium, fruit body, and fermentation liquid of G. lucidum. The different growth stages of G. lucidum are marked by different components, structures, molecular weights, and effects of GLPs. The content of polysaccharides in the mycelium is the highest while that in the fruiting body is the lowest. The monosaccharides in the fruiting bodies are mainly glucose and galactose, while that from the mycelium and spores is mainly glucose (Khanna et al. 2012). GLPs extracted from fruiting bodies can exert anticancer effects via immunomodulation. Various types of polysaccharides, with molecular weights ranging from 4×10^5 to 1×10^6 Daltons (Bishop et al. 2015), have been identified in the fruiting body and mycelia of G. lucidum (Khanna et al. 2012; Ferreira et al. 2015). The basic framework of GLPs comprises a high-molecular-weight β -(1 \rightarrow 3)-d-glucan with $(1\rightarrow 6)$ - β -d-glucosyl branches (Liu et al. 2014), and the main components of sugars are mannose, rhamnose, glucose, and galactose. The possible repeating units of G. lucidum glucans is shown in Fig. 1 (Sone et al. 1985).


Triterpenoids

More than 200 triterpenes have been identified from the fruiting bodies, spores, and mycelia of *G. lucidum* (Baby et al. 2015; Xia et al. 2014). The fruiting body of *G. lucidum* has a high content and wide variety of GTs, while the mycelium has few GTs species. GTs have not be detected in non-broken spores of *G. lucidum* (Yu et al. 2016). All triterpenes are tetracyclic triterpenes (Xia et al. 2014). According to the functional groups and side chains, GTs can be divided into compounds including ganoderic acid, ganoderiol, ganoderone, ganolactone, and ganoderal (Baby et al. 2015). The skeletal types of Ganoderma triterpenoids in *G. lucidum* are shown in Fig. 2. The names and corresponding sources of the compounds are shown in Tables 1, 2, 3, 4, 5, 6, and 7 (Baby et al. 2015; Xia et al. 2014).

Steroids

Thus far, more than 20 types of sterols have been found in *G. lucidum*, and their skeletons can be divided into ergosterols and cholesterols (Baby et al. 2015). The steroid components of *G. lucidum* are summarized in Table 8 (Baby et al. 2015).

Yang et al. Biomedical Dermatology (2019) 3:6 Page 3 of 17

Others

Proteins and polypeptide

Several bioactive proteins from *G. lucidum* have been reported. Ling Zhi-8 (LZ-8) is a polypeptide consisting of 110 amino acid residues with an acetylated amino terminus (Lin et al. 2011). The sequence and predicted secondary structure of LZ-8 is very similar to the variable region of the heavy chain of immunoglobulins. LZ-8 was the first immunomodulatory protein obtained from the mycelial extract of *G. lucidum* by using chromato-graphic and electrophoretic techniques (Ahmad 2018).

Enzymes

β-N-Acetylhexosaminidase, α-1,2-mannosidase, endo-β-1,3-glucanase, β-1,3-glucanase, and glutamic protease were extracted from *G. lucidum*, and glutamic protease is the major protein in the extracts of *G. lucidum* (Kumakura et al. 2019).

Nucleosides

G. lucidum also contains nucleosides such as adenosine, cystidine, guanosine, inosine, thymidine, and uridine as well as nucleotides, including adenine, guanine, hypoxanthine, thymine, and uracil (Gao et al. 2007).

Amino acids

Eighteen kinds of amino acids have been found in *G. lucidum*, and the most abundant amino acid was leucine, which possessed strong hypoglycemic and antioxidant activities (Zhang et al. 2018a, 2018b).

Vitamins and minerals

Several vitamins have been reported from *G. lucidum*, such as vitamins B1, B2, B6, β -carotene, C, D, and E. Moreover, various minerals such as calcium, sodium, potassium, phosphorus, iron, carbon, magnesium, zinc, chromium, arsenic, copper, manganese, silicon, aluminum, cobalt, molybdenum, nickel, and lead have been identified in *G. lucidum* (Ahmad 2018).

Physiological activity of G. lucidum

Modern medical research has shown that *G. lucidum* contains a variety of compounds with anticancer (Kao et al. 2016), hypoglycemic (Yang et al. 2018), liver protection (Zhao et al. 2019), and anti-inflammatory (Hasnat et al. 2015) effects. Studies also suggest that *G. lucidum* possesses strong antioxidant (Lee et al. 2016) antimelanogenesis (Hsu et al. 2016), anti-aging (Zeng et al. 2017), and skin barrier-repairing (Montalbano 2018) properties. Thus, *G. lucidum* is important as the lead for the development of pharmaceuticals, nutraceuticals.

Anticancer effects

It has been reported that GLPs, GTs, and extracts of *G. lucidum* have inhibitory effects on cancers, such as prostate cancer (Kao et al. 2016), lung cancer (Chen et al. 2016), glioma (Wang et al. 2018), breast cancer (Smina et al. 2017), and malignant melanoma (Zheng et al. 2018). The underlying mechanisms for the inhibition of these tumors have also been elucidated.

Whiskey and rice wine extracts of *G. lucidum* with growth inhibitory effects against prostate cancer cell lines were identified. The extracts exerted their effects by inhibiting the cell cycle, inducing apoptosis, and reducing tumor progression (Kao et al. 2016). An ethanol extract of sporoderm-broken spores of *G. lucidum* arrested the cell cycle at the G2/M phase and triggered apoptosis by decreasing the expression and activity of cell cycle regulators. It inhibited the survival and migration of human lung cancer cells in a dose-dependent manner, through inhibition of the protein kinase B (Akt) and mammalian target of rapamycin (mTOR) signaling pathway (Chen et al. 2016).

The antitumor effects of GLPs were evaluated on the immune system of rat models of glioblastoma. GLPs increased the concentration of serum interleukin-2 (IL-2), tumor necrosis factor- α (TNF- α), and interferon- γ (INF- γ); the cytotoxic activity of natural killer and T cells; and the functional maturation of dendritic cells, thus

Yang et al. Biomedical Dermatology (2019) 3:6 Page 4 of 17

resulting in the inhibition of glioma growth (Wang et al. 2018). Total triterpenes induced apoptosis in human breast adenocarcinoma cells by downregulating the levels of cyclin D1, B cell lymphoma-2 (Bcl-2), AND B cell lymphoma-extra large (Bcl-xL) and upregulating the levels of Bax and caspase-9 (Smina et al. 2017). 9,11-Dehydroergosterol peroxide from *G. lucidum* mycelium inhibited human malignant melanoma cells by participating in the process of decreasing the expression of the myeloid leukemia cell differentiation protein Mcl-1, damaging the mitochondrial membrane, and releasing cytochrome-c (Zheng et al. 2018).

The above studies confirmed that the alcohol extract, total triterpenes, and GLPs have antitumor activity. GTs inhibited cytotoxicity by inhibiting the proliferation and metastasis of cancer cells. *G. lucidum* used as supplements in cancer chemoprevention and chemotherapeutic regimens could be beneficial for the treatment and prevention of various cancers as an adjunct therapy.

Hepatoprotection

The active ingredients in *G. lucidum*, such as GLPs and GTs, can act on the immune system and effectively exhibit hepatoprotective effects and treat liver damage.

Yang et al. Biomedical Dermatology (2019) 3:6 Page 5 of 17

Table 1 Ganoderma triterpenoids in G. lucidum

No.	Compound name	Types	R_1	R_2	R ₃	R ₄	R ₅	R_6	Source
1	Lucidenic acid H	ı	β-ОН	ОН	β-ОН	Н	0	Н	Fruit body
2	Lucidenic acid L	1	β-ОН	Н	0	β-ОН	0	Н	Fruit body
3	Lucidenic acid I	1	β-ОН	ОН	0	Н	0	Н	Fruit body
4	Lucidenic acid J	1	β-ОН	ОН	0	β-ОН	0	Н	Fruit body
5	Lucidenic acid K	1	0	Н	0	α-OH	0	Н	Fruit body
6	Lucidenic acid M	1	β-ОН	Н	α-ΟΗ	Н	α-ΟΗ	Н	Fruit body
7	Methyl lucidenate I	1	β-ОН	ОН	0	Н	0	Me	Fruit body
8	Methyl lucidenate J	1	β-ОН	ОН	0	β-ОН	0	Me	Fruit body
9	Methyl lucidenate K	1	0	Н	0	α-OH	0	Me	Fruit body
10	Methyl lucidenate L	1	β-ОН	Н	0	β-ОН	0	Me	Fruit body
11	Methyl lucidenate M	1	β-ОН	Н	α-ΟΗ	Н	α-OH	Me	Fruit body
12	Methyl lucidenate A	1	0	Н	β-ОН	Н	0	Me	Mycelia
13	Methyl lucidenate C	1	β-ОН	Н	β-ОН	β-ОН	0	Me	Fruit body
14	Methyl lucidenate F	1	0	Н	0	Н	0	Me	Mycelia
15	Methyl lucidenate N	1	β-ОН	Н	β-ОН	Н	0	Me	Fruit body
16	Methyl lucidenate P	1	β-ОН	Н	β-ОН	β-ОАс	0	Me	Fruit body
17	Methyl lucidenate Q	1	0	Н	β-ОН	Н	α-ΟΗ	Me	Fruit body
18	Bethyl lucidenate H	1	β-ОН	ОН	β-ОН	Н	0	Me	Fruit body
19	Methyl lucidenate D ₂	1	0	Н	0	β-ОАс	0	Me	Fruit body
20	Ethyl lucidenate A	1	0	Н	β-ОН	Н	0	Et	Fruit body
21	Butyl lucidenate A	1	0	Н	β-ОН	Н	0	Bu	Fruit body
22	Butyl lucidenate N	1	β-ОН	Н	β-ОН	Н	0	Bu	Fruit body
23	t-Butyl lucidenate B	1	0	Н	β-ОН	β-ОН	0	Bu	Fruit body
24	Butyl lucidenate P	1	β-ОН	Н	β-ОН	β-ОАс	0	Bu	Fruit body
25	Butyl lucidenate Q	1	0	Н	β-ОН	Н	α-OH	Bu	Fruit body
26	Butyl lucidenate D ₂	1	0	Н	0	β-ОАс	0	Bu	Fruit body
27	Butyl lucidenate E ₂	1	β-ОН	Н	0	β-ОАс	0	Bu	Fruit body
28	n-Butyl lucidenate A	1	Ο	Н	β-ОН	Н	Ο	Me	Fruit body
29	n-Butyl lucidenate N	1	β-ОН	Н	β-ОН	Н	0	Н	Fruit body
30	Methyl lucidenate E ₂	1	β-ОН	Н	0	OAc	0	Me	Fruit body
31	7,15-Dihydroxy-4,4,14-trimethyl-3,11-dioxochol-8-en-24-oic acid	I	0	Н	ОН	Н	ОН	Н	Fruit body

The hepatoprotective effects of *G. lucidum* have been widely studied. GLPs can protect hepatocyte injury induced by CCl4 by inhibiting lipid peroxidation, elevating antioxidant enzyme activity, and suppressing apoptosis and immune inflammatory response (Liu et al. 2015). GTs can significantly increase the relative cell viability by 13.46% and reduce the levels of alanine aminotransferase, aspartate aminotransferase, and lactate dehydrogenase by 51.24%, 33.64%, and 24.07%, respectively, in a culture medium. GTs offered significant cytoprotection against the oxidative damage induced by tertbutyl hydrogen peroxide (t-BHP) in hepatocellular carcinoma cells by decreasing the level of malondialdehyde and increasing the contents of

glutathione and superoxide dismutase (SOD) (Wu et al. 2016). Ganoderma submerged fermentation reduced ethanol-induced steatohepatitis by decreasing the expression of inflammatory mediators (Chung et al. 2017). Analysis of histopathology and serum enzymes in mice revealed an important hepatoprotective function for the ethanol extract of G. lucidum (GLE). GLE inhibited lipid peroxidation, elevated the activity of antioxidant enzymes, and suppressed apoptotic cell death and immune inflammatory responses. It was therefore assumed that GLE can improve alcoholinduced liver injury (Zhao et al. 2019). Previous studies have concluded that G. lucidum protects hepatocytes from damage by inhibiting lipid

 Table 2 Ganoderma triterpenoids in G. lucidum

No.	Compound name	Types	R ₁	R ₂	R ₃	R ₄	R ₅	Source
2	Ganoderic acid A	II	0	β-ОН	Н	a-OH	Н	Fruit body
3	Ganoderic acid B	II	β-ОН	β-ОН	Н	Ο	Н	Fruit body/ Spore
4	Ganoderic acid C ₁	II	Ο	β- ОН	Н	Ο	Н	Fruit body/ spore
5	Ganoderic acid C ₂	II	β-ОН	β-ОН	Н	α-OH	Н	Fruit body/ spore
6	Ganoderic acid C ₆	II	β-ОН	Ο	β-ОН	0	Н	Fruit body
7	Ganoderic acid D1	II	Ο	β- ОН	β- ΟΗ	Ο	Н	Fruit body
8	Ganoderic acid E	II	0	0	Н	Ο	Н	Fruit body/ spore
9	Ganoderic acid F	II	Ο	Ο	β- OAc	Ο	Н	Fruit body
0	Ganoderic acid G	II	β-ОН	β- ОН	β- OH	Ο	Н	Fruit body
1	Ganoderic acid H	II	β-ОН	Ο	β- OAc	Ο	Н	Fruit body
2	Ganoderic acid I	II	β-ОН	β-ОН	Н	Ο	ξ-ΟΗ	Fruit body
3	Ganoderic acid J	II	Ο	Ο	Н	α-OH	Н	Fruit body
4	Ganoderic acid K	II	β-ОН,	β-ОН	β- OAc	Ο	Н	Fruit body
5	Ganoderic acid M	II	0	β-ОН	α-OH	0	Н	Fruit body
6	Ganoderic acid N	II	0	β-ОН	Н	0	ξ-ΟΗ	Fruit body
7	Ganoderic acid L	II	β-ОН	β-ОН	Н	α-ΟΗ	ξ-ΟΗ	Fruit body
8	Ganoderic acid AM ₁	II	β-ОН	0	Н	Ο	Н	Fruit body
9	Ganoderic acid O	II	0	Ο	Н	Ο	ξ-ΟΗ	Mycelium
0	Ganoderic acid B8	II	0	α-OH	Н	α-ΟΗ	Н	Fruit body
1	Ganoderic acid C6	II	β-ОН	0	β-ОН	Ο	Н	Mycelia
2	Ganoderic acid α	II	β-ОН,	0	β- OAc	β-ОН	Н	Fruit body
3	12-Hydroxylganoderic acid C2	II	β-ОН,	β-ОН	ОН	α-OH	Н	Fruit body
4	20-Hydroxylganoderic acid G	II	β-ОН	β-ОН	β-ОН	Ο	ОН	Fruit body
5	3-O-Acetylganoderic acid B	II	β- OAc	β-ОН	Н	Ο	Н	Mycelia
6	3-Acetylganoderic acid H	II	β- OAc	Ο	β- OAc	Ο	Н	Fruit body
7	3-O-Acetylganoderic acid K	II	β- OAc	Ο	Н	α-OH	Н	Mycelia
8	12-Acetoxyganoderic acid D	II	Ο	β-ОН	OAc	0	Н	Fruit body
9	12-Hydroxyganoderic acid D	II	0	β-ОН	ОН	0	Н	Fruit body
0	12-Acetoxyganoderic acid F	II	0	0	β- OAc	Ο	Н	Fruit body
1	Compound B9	II	β-ОН	α-OH	Н	а-ОН	Н	Gill
2	Ganolucidic acid A	II	0	Н	Н	а-ОН	Н	Fruit body
3	Ganolucidic acid B	II	β-ОН	Н	Н	α-OH	Н	Fruit body
4	12β-Hydroxy-3,7,11,15,23-Pentaoxo-5α-lanosta-8-en-26-oic acid	II	0	0	β-ОН	0	Н	Fruit body
5	12-Hydroxy-3,7,11,15,23-pentaoxo-lanost-8-en-26-oic acid	II	Ο	Ο	ОН	0	Н	Fruit body
66	12,15-Bis(acetyloxy)-3-hydroxy-7,11,23-trioxo-lanost-8-en-26-oic acid	II	ОН	0	OAc	OAc	Н	Fruit body

Table 2 Ganoderma triterpenoids in G. lucidum (Continued)

10.	Compound name	Types	R_1	R_2	R_3	R_4	R_5	Source
'0	Ganoderic acid W	III	α- OAc	α-OH	Н	α- OAc	Н	Fruit body
1	Ganoderic acid U	III	α-OH	α-OH	Н	Н	Н	Mycelia
2	Ganoderic acid V	III	Ο	α-OH	Н	α- OAc	Н	Mycelia
3	Ganoderic acid Z	III	β-ОН	Н	Н	Н	Н	Mycelia
4	Ganoderic acid Ma	III	α- OAc	α-OAc	Н	α-OH	Н	Fruit body
5	Ganoderic acid Mb	II	α- OAc	α-OH	Н	α- OAc	ξ- ΟΑc	Fruit body
5	Ganoderic acid Mc	III	α- OAc	α-OAc	Н	α-OH	ξ- ΟΑc	Mycelia
7	Ganoderic acid Md	III	α- OAc	a- OMe	Н	Н	ξ- ΟΑc	Fruit body
3	Ganoderic acid Mg	III	α- OAc	a- OMe	Н	α-OH	ξ- ΟΑc	Mycelia
9	Ganoderic acid Mh	III	α- OAc	α-OH	Н	α-OH	ξ- ΟΑc	Mycelial
)	Ganoderic acid Mi	III	α- OAc	a-OMe	Н	α-OH	Н	Mycelia
1	Ganoderic acid β	III	β-ОН	β-ОН	0	0	Н	Spore
	7-O-Methyl ganoderic acid O	III	α- OAc	a-OMe	Н	α- OAc	β- OAc	Mycelia
,	7-O-Ethyl ganoderic acid O	III	α- OAc	α-OEt	Н	α- OAc	ξ- OAc	Mycelia
1	7-Oxo-ganoderic acid Z	III	β-ОН	0	Н	Н	Н	Fruit body
	3α,22β-Diacetoxy-7α-hydroxyl-5α-lanost-8,24E-dien-26-oic acid	III	α- OAc	α-OH	Н	Н	β- OAc	Mycelia
5	3β,15α-Diacetoxylanosta-8,24-dien-26-oic acid	III	β- OAc	Н	Н	α- OAc	Н	Mycelia
7	11α-Hydroxy-3,7-dioxo-5α-Lanosta-8,24(E)-dien-26-oic acid	III	0	0	α-ОН	Н	Н	Fruit body
	11β-Hydroxy-3,7-dioxo-5α-lanosta-8,24(E)-dien-26-oic acid	III	0	0	β-ОН	Н	Н	Fruit body
	Ganoderic acid LM2	IV	Ο	β-ОН	Н	Ο	ОН	Fruit body
	Ganoderic acid γ	IV	Ο	β-ОН	Н	α-OH	β-ОН	Spore
	Ganoderic acid δ	IV	Ο	α-OH	Н	α-ОН	β-ОН	Spore
-	Ganoderic acid ε	IV	β-ОН	β-ОН	Н	Ο	β-ОН	Spore
	Ganoderic acid ζ	IV	β-ОН	Ο	Н	Ο	β-ОН	Spore
ļ	Ganoderic acid η	IV	β-ОН	β-ОН	β-ОН	Ο	β-ОН	Spore
)	Ganoderic acid θ	IV	β-ОН	Ο	β-ОН	Ο	β-ОН	Spore
)	Ganolucidic acid D	IV	0	Н	Н	α-OH	β-ОН	Spore/fruit body
,	Ganolucidic acid E	IV	Ο	Н	Н	α-OH	Н	Fruit body
	23S-Hydroxy-3,7,11,15-tetraoxolanost-8,24E-diene-26-oic acid		β-ОН	Ο	0	0	Н	Fruit body
)	Methyl ganoderate A		0	β-ОН	Н	а-ОН	Me	Fruit body
0	Methyl ganoderate B	IV	β-ОН	β-ОН	Н	0	Me	Fruit body
1	Methyl ganoderate D	V	Ο	β-ОН	Н	Ο	Me	Fruit body
)2	Methyl ganoderate E	V	0	Ο	Н	0	Me	Fruit body
)3	Methyl ganoderate F	V	Ο	Ο	β- ΟΑc	Ο	Me	Fruit body

Yang et al. Biomedical Dermatology (2019) 3:6 Page 8 of 17

Table 2 *Ganoderma* triterpenoids in *G. lucidum (Continued)*

No.	Compound name	Types	R_1	R_2	R_3	R_4	R_5	Source
104	Methyl ganoderate H	V	β-ОН	0	β- OAc	0	Me	Fruit body
105	Methyl ganoderate J	V	0	Ο	Н	а-ОН	Me	Fruit body
106	Methyl-O-acetylganoderate C	V	β- OAc	Ο	β- OAc	Ο	Me	Mycelia
107	$3\beta,\!7\beta\text{-Dihydroxy-}12\beta\text{-acetoxy-}11,\!15,\!23\text{-trioxo-}5\alpha\text{-lanosta-}8\text{-en-}26\text{-oic}$ acid methyl ester	V	β-ОН	β-ОН	β- OAc	Ο	Me	Fruit body
108	Ethyl ganoderate J		0	0	Н	а-ОН	Et	Mycelia
109	Ethyl 3-O-Acetylganoderate B	V	β- OAc	β-ОН	Н	Ο	Et	Mycelia
10	12β-Acetoxy-3,7,11,15,23-pentaoxo-5α-lanosta-8-en-26-oic acid ethyl ester		Ο	Ο	β- OAc	Ο	Et	Fruit body
111	Butyl ganoderate A		0	β-ОН	Н	а-ОН	Bu	Fruit body
12	Butyl ganoderate B	V	β-ОН	β-ОН	Н	0	Bu	Fruit body
113	Butyl ganoderate H	V	β-ОН	Ο	β- OAc	Ο	Bu	Fruit body
14	n-Butyl ganoderate H	V	β-ОН	Ο	β- OAc	Ο	Bu	Fruit body
15	12 β -Acetoxy-3 β ,7 β -dihydroxy-11,15,23-trioxolanost-8-en-26-oic acid butyl ester		β-ОН	β-ОН	β- OAc	Ο	Bu	Fruit body
16	12β-Acetoxy-3,7,11,15,23-pentaoxolanost-8-en-26-oic acid butyl ester		Ο	Ο	β- OAc	Ο	Bu	Fruit body
17	Methyl ganoderate C1	V	Ο	β-ОН	Н	Ο	CH_3	Fruit body
18	Compound B8	V	0	ОН	Н	ОН	Н	Fruit body
19	Compound B9	V	β-ОН	ОН	Н	ОН	Н	Fruit body
20	Methyl ganoderate M	V	0	β-ОН	α-OH	0	0	Fruit body
21	Methyl ganoderate N	V	0	β-ОН	Н	0	ОН	Fruit body
22	Methyl ganoderate K		β-ОН	Ο	Н	а-ОН	Н	Fruit body
23	Methyl ganoderate G		ОН	ОН	ОН	0	Н	G. lucidum
24	Methyl ganoderenate E	V	Ο	Ο	Н	Ο	Н	Fruit body
25	Methyl ganoderate I		ОН	ОН	Н	Ο	ОН	G. lucidum
26	Methyl ganoderate A		Ο	Н	Н	β-ОН	Н	Fruit body
27	Methyl ganoderate B	V	β-ОН	Н	Н	α-OH	Н	Fruit body
28	Ganoderal B	V	Ο	a-OH	Н	Н	CHO	Fruit body
29	Lucidadiol	V	ОН	Ο	Н	Н	ОН	Fruit body
30	Lucidal	V	β-ОН	Ο	Н	Н	CHO	Fruit body
31	Lucialdehyde B	VI	Ο	Ο	Н	Н	CHO	Fruit body
32	Lucialdehyde E	VI	Ο	β-ОН	Ο	α-OH	CHO	Spore
33	Lucialdehyde D	VI	Ο	Ο	Ο	Н	CHO	Spore
34	Ganoderic aldehyde A	VI	0	β-ОН	Ο	α-ОН	CHO	Fruit body
35	Lucialdehyde C	VI	β-ОН	0	Н	Н	CHO	Fruit body

peroxidation and decreasing the expression of inflammatory mediators.

Hypoglycemic effect

In recent years, the antidiabetic components and hypoglycemic mechanisms of *G. lucidum* have been

studied. Protein tyrosine phosphatase 1B (PTP1B) is a therapeutic target in diabetes. A novel proteoglycan, called Fudan-Yueyang-*G. lucidum* (FYGL), has been extracted from *G. lucidum*. FYGL has dose-dependent hypoglycemic and hypolipidemic effects and could increase blood insulin levels. Furthermore, it inhibited the

Table 3 *Ganoderma* triterpenoids in *G. lucidum*

No.	10.	Compound name	Types	R_1	R_2	R ₃	R ₄	Source
Sample S	16	Lucidenic acid A (lucidenate A)	VIII	0		Н	Н	Fruit body
Second S	ŀ7	Lucidenic acid B	VIII	0		β-ОН	Н	Fruit body
Section Sec	18		VIII			ОН	Н	Fruit body
1	49	Lucidenic acid C	VIII	β-ОН		β-ОН	Н	Fruit body
Section Sec	50	Lucidenic acid D	VIII	0	Ο	β-ОАс	Н	Fruit body
Signature Sig	51	Lucidenic acid D1	VIII	Ο	0	0	Н	Fruit body
Signature Sig	52	Lucidenic acid D2	VIII	Ο	0	β-ОАс	Н	Fruit body
Section Sec	53	Lucidenic acid E	VIII	β-ОН	0	β-ОАс	Н	Fruit body
Fruit body Fr	54	Lucidenic acid E1	VIII	0		α-OH	Н	Fruit body
Section Sec	55	Lucidenic acid E2	VIII	β-ОН	0	β-ОАс	Н	Fruit body
See Lucidenic acid P VIII β-OH β- β- β-OAC H Fruit body	56	Lucidenic acid F	VIII	Ο	0	Н	Н	Fruit body
OH O O β-OAC ξ-OH Fruit body O O O O O O O O O	57	Lucidenic acid N	VIII	β-ОН		Н	Н	Fruit body
20 - Hydroxylucidenic acid E2 VIII β-OH O β-OAC ξ-OH Fruit body S-OH	8	Lucidenic acid P	VIII	β-ОН		β-ОАс	Н	Fruit body
20-Hydroxylucidenic acid F VIII O O H ξ-OH Fruit body Fruit body ξ-OH ξ-OH ξ-OH Fruit body ξ-OH ξ-OH ξ-OH Fruit body ξ-OH ξ-OH ξ-OH ξ-OH Fruit body ξ-OH	59	20-Hydroxylucidenic acid D2	VIII	0	0	β-ОАс	ξ-ΟΗ	Fruit body
20 20-Hydroxylucidenic acid N VIII β-OH β-	0	20-Hydroxylucidenic acid E2	VIII	β-ОН	Ο	β-ОАс	ξ-ΟΗ	Fruit body
OH OH OH OH OH OH OH A36-Hydroxy-4,4,14-trimethyl-7,11,15-trioxochol-8-en-24-oic acid VIII	1	20-Hydroxylucidenic acid F	VIII	0	0	Н	ξ-ΟΗ	Fruit body
OH 3β-Hydroxy-4,4,14-trimethyl-7,11,15-trioxochol-8-en-24-oic acid VIII β-OH O H H Fruit body Ganoderal A IX O H Me CHO Fruit body Ganoderic aldehyde A IX β-OH H Me CHO Fruit body OH Ganoderic aldehyde TR IX O H Me CH2OH Fruit body OH Ganoderiol A(ganodermenonol) IX O H Me CH2OH Fruit body mycelia Ganoderiol B IX β-OH H Me CH2OH Fruit body mycelia Ganoderiol B IX β-OH H CH2OH CH2OH Fruit body mycelia Ganoderiol B IX O H CH2OH Fruit body mycelia Ganoderiol F IX O H CH2OH CH2OH Fruit body OH CH2OH Fruit body Mycelia Ganoderiol F IX O H CH2OH CH2OH Fruit body OH CH2OH Fruit body OH CH2OH Fruit body Mycelia Ganoderiol F IX O H CH2OH CH2OH Fruit body OH CH2OH Fruit body OH Ganoderiol F IX O H CH2OH CH2OH Fruit body OH CH2OH Fruit body OH Ganoderiol G Ganoderiol G Ganoderiol G Ganoderiol G Ganoderiol G IX O H CH2OH CH2OH Fruit body OH Ganoderiol G Ganoderiol G Ganoderiol G Ganoderiol G Ganoderiol G IX O H CH2OH Fruit body OH Ganoderiol G IX O H CH2OH Fruit body OH Ganoderiol G Ganoderi	52	20-Hydroxylucidenic acid N	VIII	β-ОН		Н	ξ-OH	Fruit body
Signal and a second and second anatice second and second and second and second and second and seco	53	20-Hydroxylucidenic acid P	VIII	β-ОН		β-ОАс	ξ-OH	Fruit body
IX β-OH H Me CHO Fruit body Fruit body Fruit body Ganoderic aldehyde TR IX O α-OH H Me CH2OH Fruit body Fruit body Fruit body Ganoderic aldehyde TR IX O H Me Fruit body Fruit body Fruit body Ganoderic aldehyde TR IX β-OH H Me CH2OH Fruit body Fruit	54	3β-Hydroxy-4,4,14-trimethyl-7,11,15-trioxochol-8-en-24-oic acid	VIII	β-ОН	0	Н	Н	Fruit body
Ganoderic aldehyde TR IX O α-OH Me Fruit body Ganoderol A(ganodermenonol) IX O H Me CH2OH Fruit body Ganoderol B IX β-OH H Me CH2OH Fruit body mycelia IX β-OH H Me CH2OH Fruit body mycelia IX β-OH H CH2OH CH2OH Fruit body mycelia IX β-OH H CH2OH CH2OH Fruit body mycelia IX O H CH2OH CH2OH Fruit body Meclia IX O H O H G-OH Fruit body Meclia IX O H O H O Meclia IX O H O Meclia IX O H O H O	55	Ganoderal A	IX	Ο	Н	Me	CHO	Fruit body
OH New CH2OH Fruit body Ganoderol B New CH2OH Fruit body mycelia New CH2OH CH2OH Fruit body mycelia New CH2OH Fruit body Me Methyl 20(21)-dehydrolucidenic acid A New CH2OH Fruit body Me Methyl 20(21)-dehydrolucidenate A New Me Me Me Me Methyl Body Me Methyl 20(21)-dehydrolucidenate A New Me Me Methyl Body Methyl 20(21)-dehydrolucidenate A New Me Me Methyl Body Me Methyl 20(21)-dehydrolucidenate A New Me Methyl Body Methyl 20(21)-dehydrolucidenate A New Me Methyl Body Methyl 20(21)-dehydrolucidenate A New Methyl 20(21)-dehy	6	Lucialdehyde A	IX	β-ОН	Н	Me	CHO	Fruit body
Section Sec	57	Ganoderic aldehyde TR	IX	0		CHO	Me	Fruit body
mycelia mycel	58	Ganoderol A(ganodermenonol)	IX	Ο	Н	Me	CH2OH	Fruit body
Ganoderiol B IX O α- OH CH2OH CH2OH Fruit body OH OH α-OH H Fruit body OH OH OH OH OH OH OH O	59	Ganoderol B	IX	β-ОН	Н	Me	CH2OH	
OH 72 Ganoderiol F 73 Sα-Lanosta-7,9(11),24-triene-15α-26-dihydroxy-3-one 1X O H CH2OH CH2OH Fruit body 74 Lucidenic acid O 75 20(21)-Dehydrolucidenic acid A XI O H O H Fruit body 76 Methyl 20(21)-dehydrolucidenate A XI O H O Me Fruit body 37 Ganoderenic acid A XI O H O Me Fruit body XI O H O Fruit body XI B-OH B- H O Fruit body XI B-OH B- H O Fruit body XI B-OH B- H O Fruit body	70	Ganodermatriol	IX	β-ОН	Н	CH2OH	CH2OH	Fruit body
3 5α-Lanosta-7,9(11),24-triene-15α-26-dihydroxy-3-one IX O α-OH Me CH2OH Fruit body OH A Lucidenic acid O XI β-OH OH α-OH H Fruit body XI O H O Me Fruit body OH A Methyl 20(21)-Dehydrolucidenate A XI O H O Me Fruit body OH A Ganoderenic acid A XI O H O Me Fruit body OH XI O H O Me Fruit body OH XI O H O Me Fruit body OH XI O B-H α-OH Fruit body OH XI Ganoderenic acid B XI β-OH β- H O Fruit body OH XI β-OH β- H O Fruit body	1	Ganoderiol B	IX	0		CH2OH	CH2OH	Fruit body
OH 74 Lucidenic acid O XI β-OH OH α-OH H Fruit body 75 20(21)-Dehydrolucidenic acid A XI O H O Me Fruit body 76 Methyl 20(21)-dehydrolucidenate A XI O H O Me Fruit body XI O H O Me Fruit body XI O H O Fruit body XI O H O Fruit body XI B-OH β- H O Fruit body	72	Ganoderiol F	IX	0	Н	CH2OH	CH2OH	Fruit body
75 20(21)-Dehydrolucidenic acid A XI O H O H Fruit body 76 Methyl 20(21)-dehydrolucidenate A XI O H O Me Fruit body 76 Ganoderenic acid A XI O H O Me Fruit body 77 Ganoderenic acid B XI β-OH β- H O Fruit body 78 Ganoderenic acid C XI β-OH β- H O Fruit body 79 Ganoderenic acid C XI β-OH β- H O Fruit body	73	5α-Lanosta-7,9(11),24-triene-15α-26-dihydroxy-3-one	IX	0		Me	CH2OH	Fruit body
76 Methyl 20(21)-dehydrolucidenate A XI O H O Me Fruit body Reference acid A XI O H O Me Fruit body Reference acid B XI O H O Me Fruit body Reference acid B XI O H O Me Fruit body Reference acid B XI β-OH β- H O Fruit body Reference acid C XI β-OH β- H α-OH Fruit body	74	Lucidenic acid O	XI	β-ОН	ОН	α-OH	Н	Fruit body
16 Ganoderenic acid A X O β- H α-OH Fruit body 17 Ganoderenic acid B X β-OH β- H O Fruit body 18 Ganoderenic acid C X β-OH β- H α-OH Fruit body	5	20(21)-Dehydrolucidenic acid A	XI	0	Н	0	Н	Fruit body
ÖH 37 Ganoderenic acid B X β-OH β- H O Fruit body OH 38 Ganoderenic acid C X β-OH β- Η α-OH Fruit body	76	Methyl 20(21)-dehydrolucidenate A	XI	0	Н	0	Me	Fruit body
OH 88 Ganoderenic acid C X β-OH β- Η α-OH Fruit body	36	Ganoderenic acid A	Χ	Ο		Н	α-OH	Fruit body
	37	Ganoderenic acid B	Χ	β-ОН		Н	0	Fruit body
	38	Ganoderenic acid C	Χ	β-ОН		Н	a-OH	Fruit body

Yang et al. Biomedical Dermatology (2019) 3:6 Page 10 of 17

Table 3 Ganoderma triterpenoids in G. lucidum (Continued)

No.	Compound name	Types	R_1	R_2	R_3	R ₄	Source
139	Ganoderenic acid D	X	0	β- OH	Н	0	Fruit body
140	Ganoderenic acid K	Χ	β-ОН	β- ΟΗ	β-OAc	0	Fruit body
141	Ganoderenic acid E	Χ	0	β- ΟΗ	β-ОН	0	Gill
142	Elfvingic acid A	Χ	Ο	Ο	α-OH	β-ОН	Fruit body
143	12β-Acetoxy-7β-hydroxy-3,11,15,23-tetraoxo-5α-lanosta-8,20-dien-26-oic acid	Χ	0	β- OH	β-OAc	0	Fruit body
144	12β-Acetoxy-3β-hydroxy-7,11,15,23-tetraoxo-lanost-8,20E-diene-26-oic acid	Χ	β-ОН	0	β-ОАс	0	Fruit body
145	12β-Acetoxy-3β,7β-dihydroxy-11,15,23-trioxo-5α-lanosta-8,20-dien-26-oic acid	Χ	β-ОН	β- OH	β-OAc	0	Fruit body

overexpression of PTP1B, enhanced insulin-stimulated glycogen synthesis, and decreased blood glucose in a mouse model of insulin resistance (Tian et al. 2018). FYGL can ameliorate type 2 diabetes mellitus caused by mitochondrial dysfunction and can decrease ROS level (Yang et al. 2019).

In addition, GLPs can downregulate the activity of hepatic glucose-regulated enzymes and epididymal fat/BW ratio and improvement of insulin resistance (Xiao et al. 2017). The results demonstrated that GLPs have significant hypoglycemic properties and that it may be an effective dietary food for the prevention and treatment of obesity and diabetes.

Anti-inflammatory effect

Inflammation is a normal physiological response to an infection or injury, which is part of host defense and tissue healing (Lee and Choi 2018). In the inflammatory environment of the body, elevated levels of TNF-α, IFNy, and IL-4 can further accelerate the inflammatory response in the dermis and destroy epidermal barrier function. GLPss58, a sulfated form of a polysaccharide from the fruiting body of G. lucidum, can inhibit the binding of L-selectin with the receptor, activate the complement systems, and block the binding of TNF- α and INF- γ to their antibodies. GLPss58 could inhibit all the L-selectin-, complement-, and cytokine-mediated inflammation pathways (Zhang et al. 2018a, 2018b). In addition, GLPs can prevent inflammation, maintain intestinal homeostasis, and regulated the intestinal immunological barrier functions in mice by markedly suppressing the secretions of TNF- α , IL-1 β , IL-6, and IL-4 (Wei et al. 2018). The anti-inflammatory effect of GLPs plays an important role in clinic for sensitive skin.

Effect on the skin

G. lucidum has been an important functional ingredient in many salve formulations due to its anti-aging, anti-melanogenesis, and skin barrier-enhancing properties.

Anti-melanogenesis effects

The abnormal accumulation of melanin causes skin pigmentation. Tyrosinase is an enzyme that regulates melanin synthesis. G. lucidum can inhibit the activity of tyrosinase and tyrosine-related proteins, which prevents hyperpigmentation. Methyl lucidenate F isolated from G. lucidum showed a dose-dependent tyrosinase inhibitory activity, with an IC₅₀ of 32.23 μ M (Zhang et al. 2011). On the other hand, the cAMP-dependent signaling pathway regulates melanogenesis by inhibiting cellular phosphorylation of the cAMP-responsive element-binding protein (CREB). Thus, downregulating the expression microphthalmia-associated transcription factor (MITF) decreases melanin production (Liu et al. 2015). The active compound Ganoderma mannitol was obtained from G. lucidum. Compared to arbutin (0.5 mM), ganodermanondiol (10 µM) significantly reduced the melanin content in B16F10 melanoma cells. Furthermore, the inhibitory effect of ganodermanondiol contributed to the reduction in MITF expression and melanin production through the inhibition of CREB phosphorylation. The phosphorylation of extracellular regulated protein kinase (ERK) and c-Jun N-terminal kinase (JNK) downregulated melanin synthesis, but phosphorylation of p38 triggered MITF expression and melanin production. Ganodermanondiol induced the phosphorylation of ERK and JNK suppressed the phosphorylation of p38 (Kim et al. 2016). GLPs are different from GTs in that they can directly affect melanogenesis in melanocytes. GLP can antagonize UVB-induced skin pigmentation in vivo (Hu et al. 2019a, 2019b). GLP can inhibit the paracrine effects of keratinocytes and fibroblasts via the fibroblast growth factor (FGF2)/MAPK pathway to decrease melanogenesis in melanocytes (Jiang et al. 2019). G. lucidum can treat pigmentary dermatosis such as solar lentigo, chloasma, freckles, and senile plaques.

Antioxidant and anti-aging activity

UV is a primary environmental factor implicated in skin aging; it causes coarse wrinkling, dryness, and laxity

Table 4 *Ganoderma* triterpenoids in *G. lucidum*

No.	Compound name	Types	R_1	R_2	R ₃	Source
177	Ganoderic acid P	XII	α-OH	α-OAc	β-ОАс	Mycelia
178	Ganoderic acid Q	XII	α-OAc	α-OH	β-ОАс	Mycelia
179	Ganoderic acid R	XII	α-OAc	Н	β-ОАс	Fruit body /mycelia
180	Ganoderic acid S	XII	α-OH	Н	β-ОАс	Mycelia
181	Ganoderic acid T	XII	α-OAc	α-OAc	β-ОАс	Fruit body /mycelia
182	Ganoderic acid Y	XII	β-ОН	Н	Н	Fruit body
183	Ganoderic acid X	XII	α-OH	α-OAc	Н	Mycelia
184	Ganoderic acid TR1	XII	0	β-ОН	Н	Fruit body
185	Ganoderic acid Me	XII	α-OAc	α-OAc	Н	Fruit body /mycelia
186	Ganoderic acid Mf	XII	α-OAc	a-OH	Н	Fruit body /mycelia
187	15-Hydroxy ganoderic acid S	XII	0	a-OH	Н	Fruit body
188	Ganodermic acid S	XII	β-ОАс	α-OAc	Н	Fruit body
189	Ganodermic acid Ja	XII	α-OH	a-OH	Н	Mycelia
190	Ganodermic acid Jb	XII	β-ОН	a-OH	Н	Mycelia
191	Ganodermic acid R	XII	α-OAc	α-OAc	Н	Mycelia
192	Ganodermic acid P1	XII	α-OAc	a-OH	OAc	Mycelia
193	Ganodermic acid P2	XII	β-ОН	α-OAc	β-ОАс	Mycelia
194	Ganodermic acid T-N	XII	β-ОН	α-OAc	Н	Mycelia
195	Ganodermic acid T-O	XII	β-ОАс	a-OH	Н	Fruit body
196	Ganodermic acid T–Q	XII	Ο	α-OAc	Н	Mycelia
197	3α,15α,22α-Trihydroxylanosta-7,9(11),24-trien-26-oic acid	XII	α-OH	a-OH	α-OH	Mycelia
198	3α,15α-Diacetoxy-22α-hydroxylanosta-7,9(11),24-trien-26-oic acid	XII	α-OAc	α-OAc	α-ΟΗ	Mycelia
199	3β,15α-Diacetoxy-22α-hydroxylanosta-7,9(11),24-trien-26-oic acid	XII	β-ОАс	α-OAc	α-OH	Mycelia
200	3β,15α,22β-Trihydroxylanosta-7,9(11),24-trien-26-oic acid(ganodermic acid S)	XII	β-ОН	α-OH	β-ОН	Mycelia
201	22β-Acetoxy-3α,15α-dihydroxylanosta-7,9(11),24-trien-26-oic acid	XII	α-ΟΗ	α-OH	β-ОАс	Mycelia
202	22β-Acetoxy-3β,15α-dihydroxylanosta-7,9(11),24-trien-26-oic acid	XII	β-ОН	α-OH	β-ОАс	Mycelia
203	Lanosta-7,9(11),24-trien-3α-acetoxy-15α,22β-dihydroxy-26-oic acid	XII	α-OAc	a-OH	β-ОН	Fruit body
204	Lanosta-7,9(11),24-trien-3β,15α,22β-triacetoxy-26-oic acid	XII	β-ОАс	α-OAc	β-ОАс	Fruit body
205	Lanosta-7,9(11),24-trien-3α-acetoxy-15α-hydroxy-23-oxo-26-oic acid	XIII	α-OAc	ОН	0	G. lucidum
206	Lanosta-7,9(11),24-trien-15α-acetoxy-3α-hydroxy-23-oxo-26-oic acid	XIII	α-ΟΗ	OAc	Ο	G. lucidum
207	Lanosta-7,9(11),24-trien-3α,I5α-diacetoxy-23-oxo-26-oic acid	XIII	α-OAc	OAc	0	G. lucidum
208	Ganoderic acid Sz	XIV	Ο	Н	Н	Fruit body
209	Ganoderic acid TR	XIV	Ο	α-OH	Н	Fruit body
210	23-Hydroxy ganoderic acid S	XIV	ОН	Н	ОН	Fruit body
211	Lucidone A	XV	β-ОН	β-ОН	0	Fruit body
212	Lucidone B	XV	Ο	β-ОН	Ο	Fruit body
213	Lucidone C	XV	β-ОН	β-ОН	α-ΟΗ	Fruit body
214	Ganoderiol E (3 β , 26,27-trihydroxy-5 α -lanosta-8,24-dien-7-one)	XVI	β-ОН	Ο	Н	Fruit body
215	Ganoderiol I (15α, 26,27-trihydroxy-5α-lanosta-8,24-dien-3-one)	XVI	Ο	a-OMe	α-ΟΗ	Fruit body
216	Methyl Ganolucidate C	XVII	ОН	ОН	Me	Fruit body
217	Ganolucidic acid C	XVII	ОН	ОН	Н	Fruit body
218	methyl ganolucidate B	XVII	ОН	Н	Me	Fruit body
219	methyl lucidenate G	XXVII	0	ОН	CH ₃	Fruit body
220	Lucidenic acid G	XXVII	0	ОН	Н	Fruit body

Yang et al. Biomedical Dermatology (2019) 3:6 Page 12 of 17

Table 5 Ganoderma triterpenoids in G. lucidum

No.	Compound name	Types	R	Source
221	Ganosporelactone A	XVIII	0	Spore
222	Ganosporelactone B	XVIII	ОН	Spore
223	Epoxyganoderiol B	XIX	0	Fruit body
224	Epoxyganoderiol C	XIX	β-ОН	Fruit body
225	26-Hydroxy-5α-lanosta-7,9(11),24-triene-3,22-dione	XX	Me	Fruit body
226	26,27-Dihydroxy-5α-lanosta-7,9(11),24-triene-3,22-dione	XX	CH2OH	Fruit body
227	Ganoderitriol M	XXI	β-ОН	Fruit body
228	Lucidumol A	XXI	0	Fruit body/spore
229	Ganodermanondiol	XXII	0	Fruit body/spore
230	Lucidumol B	XXII	β-ОН	Fruit body/spore

(Kong et al. 2018). UVB irradiation stimulates MMP-1 secretion and reduces the synthesis of collagen and elastin, which can accelerate skin senescence (Hwang et al. 2018). The extract of *G. lucidum* can inhibit UVB-induced MMP-1 expression and increased procollagen expression by inhibiting ERK pathways (Lee et al. 2018). GLPs can inhibit MMP-1 protein expression, promote C-telopeptides of type I collagen protein, and inhibit ROS production in fibroblasts following UVB treatment (Zeng et al. 2017).

The long-term presence of free radicals and ROS accelerates aging and numerous age-associated illnesses (Bishop et al. 2015). Therefore, studies on scavenging free radicals and ROS are particularly important in antiaging research.

The antioxidant properties of crude proteins obtained from the mycelium and fruiting bodies of *G. lucidum* were studied. It was found that protein from both the mycelia and fruit body exhibited antioxidant capacity. The mycelial protein extract showed better scavenging activities than those shown by fruiting body protein extract, in terms of both 2,2'-azino-bis (3-ethylbenzthiazoline-6-

sulfonic acid) radical- and 2,2-diphenylpicrylhydrazyl radical (DPPH•) radical-scavenging abilities (Sa-Ard et al. 2015). Oxidative stress markers were measured by using the comet assay to measure ROS generation. Furthermore, the ethanol extract of *G. lucidum* could significantly reduce $\rm H_2O_2$ -induced ROS production compared to that in the positive control (Lee et al. 2016).

Skin barrier-repairing activity

A wound damages the skin barrier, which will cause microbial invasion and inflammation. *G. lucidum*, as a wound-healing agent, can be used to treat chronic nonhealing wounds in vitro (Montalbano 2018). Nanogel containing triterpenoids isolated from *G. lucidum* has shown beneficial effects on the frostbite healing process by increasing the wound healing area and improving the degree of pathological change in skin tissue of rats with frostbite (Shen et al. 2016). GLP promotes the migration ability of fibroblasts and upregulates the expressions of C-terminal peptide of procollagen type I and transforming growth factor-β1 in fibroblasts, so it can heal wounds

Table 6 Ganoderma triterpenoids in G. lucidum

No.	Compound name	Types	R_1	R_2	Source
231	Ganoderiol C	XXIII	0	a-OEt	Fruit body
232	Ganoderiol D	XXIII	0	0	Fruit body
233	Ganoderiol G	XXIII	0	a-OMe	Fruit body
234	Ganoderiol H	XXIII	β-ОН	0	Fruit body
231	Ganodermanontriol	XXIV	0	a-OH	Fruit body/spore
232	Ganoderiol A	XXIV	β-ОН	ОН	Fruit body
233	8β,9α-Dihydroganoderic acid C	XXV	Н	0	Mycelia
234	8β,9α-Dihydroganoderic acid J	XXV	Н	a-OH	Fruit body
235	Ganosporeric acid A	XXV	0	Ο	Spore
236	3β,7β-Dihydroxy-11,15,23-trioxo-lanost-8,16-dien-26-oic acid	XXVI	Н	0	Fruit body
237	12β-Acetoxy-3β,7β-dihydroxy-11,15,23-trioxo-lanost-8,16-dien-26-oic acid	XXVI	β-ОАс	Ο	Fruit body

Yang et al. Biomedical Dermatology (2019) 3:6 Page 13 of 17

Table 7 Ganoderma triterpenoids in G. lucidum

No.	Compound Name	Structures of compounds	Source
238	4,4,14a-trimethyl-5a-chol- 7,9(11)-dien-3-oxo-24-oic acid	СООН	fruit body
239	4,4,14α-Trimethyl-3,7-dioxo- 5α-chol-8-en-24-oic acid	СООН	fruit body
240	8α , 9α -Epoxy-3, 7 , 11 , 15 , 23 -pentaoxo- 5α -lanosta- 26 -oic acid	ОСООН	fruit body
241	Methyl ganoderate A acetonide	COOMe	fruit body
242	Lucidenolactone	O O O O O O O O O O O O O O O O O O O	fruit body
243	Ganoderic acid Df	НО СООН	fruit body

(Hu et al. 2019a, 2019b). Thus, *G. lucidum* can be used for barrier repair to promote wound regeneration.

Other effects

Besides the above-mentioned pharmacological actions, the extract of *G. lucidum* can activate the AMPK/mTOR and PINK1/Parkin signaling pathways and regulate mitochondrial function, autophagy, and apoptosis, thus improving parkinsonian symptoms (Ren et al. 2018). *G. lucidum* can induce the secretion of immunoglobulin A and ameliorate intestinal infections (Kubota et al. 2018).

In summary, the anticancer and anti-inflammatory effects of *G. lucidum* have been confirmed in cell assays and signaling pathways, and especially, hypoglycemic effects have been demonstrated in mice. However, *G. lucidum* effects have been investigated in few clinical trials

in humans. Therefore, the side effects of *G. lucidum* need to be further studied. Further, the melanin inhibitory, anti-aging, antioxidant, and skin barrier-enhancing properties of the secondary metabolites from *G. lucidum* should be focused on more in future research. *G. lucidum* has great potential in the development of medicines, cosmeceuticals, and nutritional supplements and the research and development of *G. lucidum* resources are of great significance.

Conclusions

G. lucidum is a traditional Chinese medicine that has been used for centuries as a nutritional supplement and herbal medication. This review summarizes the active substances of G. lucidum. Polysaccharides and triterpenoids are the major secondary metabolites of G.

Table 8 Steroids in *G. lucidum*

No.	Compound Name	Structures of compounds	R	Source
				fruit
		、《人》		body/
244	Ergosterol			spore
		но		
				spore
		、《人》		spore
245	stellasterol	~ Y ~ Y		
243	stenasteror			
		но		
246	3β,5α-Dihydroxy-6β-	;	R1= H	fruit body
2 1 0			R1= H R2= β-OMe	mun bouy
	methoxy ergosta-7,22- diene		K2- p-Owie	
247			P 1= H	enoro
241	6-dehydrocerevisterol	[K ₁]	R1= H	spore
		HO OHI	R2= O	
248	3β,5α,9α-Trihydroxy-	1/2	$R1 = \alpha$ -OH $R2 = O$	spore
	(22E,24R)-ergosta-			
	7,22-dien-6-one			
249	22E,24R-Ergosta-	\ _ L	R1 = H	spore
	7,22-diene-3β,5α,6β-		R2= H	
	triol			
250	22E,24R-Ergosta-	$R_1 \parallel R_2$	$R1 = \alpha$ -OH $R2 = H$	spore
	7,22-diene-			
	$3\beta,5\alpha,6\beta,9\alpha$ -tetraol	НООН		
	22E,24R-Ergosta-		$R1 = \alpha$ -OH	spore
251	7,22-diene-		$R2 = \alpha$ -OH	
	3β,5α,6β,9α,14a-			
	pentol			
252	6α-Hydroxy-ergosta-	~ /	$R=\alpha$ -OH	fruit body
	4,7,22-trien-3-one			
253	6β-Hydroxy-ergosta-	. ~ '	R=β - ОН	fruit body
	4,7,22-trien-3-one			
254	Ergosta-4,7,22-triene-		R=O	mycelium
	3,6-dione	o R		y
255	Ganodermaside A	1	R1= H	spore
200	Ganode/maside / L	.\^\	$R2 = \alpha$ -OH	Spore
256	Ganodermaside B		R1= H	spore
200	Sunodermaside D		R2= β-OH	spore
257	Ganodermaside C	R_1 R_2	R1=α-OH	spore
231	Ganodermaside C	0 ~ ~	R2= O	spore
258	Ganodermaside D		R2=0 $R1=\alpha$ -OH	enore
230	Janouerillaside D		R1=α-OH R2= H	spore
250	Francts 7.22 4: 2			figuit lead-
259	Ergosta-7,22-dien-3-		R=O	fruit body
	one	, Y Y Y	P. 0. 0 1	6-31-1
260	Ergosta-7,22-diene-3β-	. ()	R=β-O-pentadecanoyl	fruit body
260	yl pentadecanoate			
	Ergosta-7,22-dien-3β-		R=β-O-palmitoyl	fruit body
261	yl palmitate	π , ,		
	F 7.00 P		P. O. C. C.	0.54.4
2.55	Ergosta-7,22-dien-3β-		R=β-O-linoleoyl	fruit body
262	yl linoleate			
	5α,8α-	1		fruit body
	epidioxyergosta-6,22-			
263	dien-3β-ol			
		но		

Yang et al. Biomedical Dermatology (2019) 3:6 Page 15 of 17

lucidum. The polysaccharides mostly comprise α- or β- $(1\rightarrow 3)$ -, $(1\rightarrow 6)$ -glucans and hetero-polysaccharides. More than 200 kinds of GTs have been isolated from *G. lucidum*. GTs can effectively inhibit the proliferation and metastasis of cancer cells. Ganoderic acids are the prominent bioactive constituents of GTs. Ganoderic acid A, ganoderic acid F, ganoderic acid H, ganoderic acid C, ganoderic acid D, ganoderic acid T, ganoderic acid X, and ganoderic acid Y can be used as adjuvant drugs to suppress cancer. Therefore, the application of GTs in the pharmaceutical industry is very important.

In addition, the secondary metabolites isolated from *G*. lucidum can be used in functional foods or medicines for properties such as anti-aging, decreased surface pigmentation, and skin barrier-enhancing effects. GTs, especially methyl aspartate and Ganoderma mannitol, have skin-whitening effects. Crude proteins obtained from the mycelia and fruiting bodies of G. lucidum show antioxidant effects. GLPs can inhibit the expression of MMP-1, increase procollagen expression, and scavenge free radicals and reactive oxygen species, which can delay aging. The human internal environment is interacted by many kinds of cells through various forms. Although the pharmacological effects of G. lucidum have been confirmed at the level of monolayer cells, monolayer cells can not simulate the multicellular environment in vivo, so the effect of G. lucidum on multicellular interconnection can not be explored. We can use cell co-culture to study the relationship between different cells in order to verify the pharmacological effect of G. lucidum.

In recent years, with the development of microbial technology, it has a good prospect to obtain GTs through microbial fermentation technology. *G. lucidum* has become a popular nutraceutical worldwide; it has great cosmeceutical potential. *G. lucidum*, as a good medicinal and food homologous medicinal material, has received more and more attention in the food health care and cosmetics industry, and its application in food health products and cosmetics has potential for further exploration.

Abbreviations

AMPK: AMP-activated protein kinase; Bcl-2: B cell lymphoma-2; Bcl-xL: B cell lymphoma-extra large; cAMP: Cyclic adenosine monophosphate; CREB: cAMP-responsive element-binding protein; ERK: Extracellular signal regulated kinase; FGF2: Fibroblast growth factor; G. lucidum: Ganoderma lucidum; GLE: Extract of G. lucidum; GLPs: G. lucidum polysaccharides; Il-2: Serum interleukin-2; INF-γ: Interferon-γ; JNK: c-Jun N-terminal kinase; LZ-8: Ling Zhi-8; MAPK: Mitogen-activated protein kinase; MITF: Microphthalmia-associated transcription factor; MMP: Matrix metalloproteinase; ROS: Reactive oxygen species; SOD: Superoxide dismutase; t-BHP: Tertbutyl hydrogenperoxide; TNF-α: Tumor necrosis factor-α; UV: Ultraviolet; UVB: Ultraviolet B

Acknowledgements

This work was supported by China Cosmetic Collaborative Innovation Center, the Open Research Fund Program of Beijing Key Lab of Plant Resource Research and Development, BTBU(PRRD-2017-ZD1).

Authors' contributions

LL and FY designed and finalized the scheme; YLY performed the review work and wrote the paper; JHZ drawn some structural formulas; WSZ, XYG, and HNZ contributed to the manuscript writing. All authors read and approved the final manuscript.

Funding

This work was supported by China Cosmetic Collaborative Innovation Center, the Open Research Fund Program of Beijing Key Lab of Plant Resource Research and Development, BTBU(PRRD-2017-ZD1).

Availability of data and materials

Not applicable

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare that they have no competing interests.

Author details

¹Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing 100048, China. ²Department of Industrial Engineering, Tsinghua University, Beijing 100084,

Received: 23 July 2019 Accepted: 20 September 2019 Published online: 29 November 2019

References

- Ahmad MF. Ganoderma lucidum: persuasive biologically active constituents and their health endorsement. Biomed Pharmacother. 2018:107:507–19.
- Baby S, Johnson AJ, Govindan B. Secondary metabolites from Ganoderma. Phytochemistry. 2015;114:66–101.
- Bishop KS, Kao CH, Xu Y, Glucina MP, Paterson RR, Ferguson LR. From 2000years of Ganoderma lucidum to recent developments in nutraceuticals. Phytochemistry. 2015;114:56–65.
- Campos Ziegenbein F, Hanssen HP, Konig WA. Secondary metabolites from Ganoderma lucidum and Spongiporus leucomallellus. Phytochemistry. 2006; 67(2):202–11.
- Chen TQ, Li KB. Resources, taxonomy, ecological distribution, exploitation and utilization of Ganodermataceae from China. Acta Agric Univ Jiangxiensis. 2004;26(1):89–95.
- Chen Y, Lv J, Li K, Xu J, Li M, Zhang W, et al. Sporoderm-broken spores of ganoderma lucidum inhibit the growth of lung cancer: involvement of the Akt/mTOR signaling pathway. Nutr Cancer. 2016;68(7):1151–60.
- Chung D-J, Yang M-Y, Li Y-R, Chen W-J, Hung C-Y, Wang C-J. Ganoderma lucidum repress injury of ethanol-induced steatohepatitis via anti-inflammation, anti-oxidation and reducing hepatic lipid in C57BL/6J mice. J Funct Foods. 2017;33:314–22.
- Cilerdzic JL, Sofrenic IV, Tesevic W, Brceski ID, Duletic-Lausevic SN, Vukojevic JB, et al. Neuroprotective potential and chemical profile of alternatively cultivated Ganoderma lucidum basidiocarps. Chem Biodivers. 2018;15(5): e1800036.
- Cör D, Knez Ž, Knez HM. Antitumour, antimicrobial, antioxidant and antiacetylcholinesterase effect of Ganoderma Lucidum terpenoids and polysaccharides: a review. Molecules. 2018;23(3):649.
- Ferreira IC, Heleno SA, Reis FS, Stojkovic D, Queiroz MJ, Vasconcelos MH, et al. Chemical features of Ganoderma polysaccharides with antioxidant, antitumor and antimicrobial activities. Phytochemistry. 2015;114:38–55.
- Gao J, Leung K, Wang Y, Lai C, Li S, Hu L, et al. Qualitative and quantitative analyses of nucleosides and nucleobases in Ganoderma spp. by HPLC-DAD-MS. J Pharm Biomed Anal. 2007;44(3):807–11.
- Hapuarachchi K, Elkhateeb W, Karunarathna S, Cheng C, Bandara A, Kakumyan P, et al. Current status of global Ganoderma cultivation, products, industry and market. MYCOSPHERE. 2018;9(5):1025–52.

- Hasnat MA, Pervin M, Cha KM, Kim SK, Lim BO. Anti-inflammatory activity on mice of extract of Ganoderma lucidum grown on rice via modulation of MAPK and NF-kappaB pathways. Phytochemistry. 2015;114:125–36.
- Hsu K-D, Chen H-J, Wang C-S, Lum C-C, Wu S-P, Lin S-P, et al. Extract of Ganoderma formosanum mycelium as a highly potent tyrosinase inhibitor. Sci Rep. 2016:6:32854.
- Hu F, Yan Y, Wang CW, Liu Y, Wang JJ, Zhou F, et al. Article effect and mechanism of Ganoderma lucidum polysaccharides on human fibroblasts and skin wound healing in mice. Chinese journal of integrative medicine. 2019a:25(3):203–9.
- Hu S, Huang J, Pei S, Ouyang Y, Ding Y, Jiang L, et al. Ganoderma lucidum polysaccharide inhibits UVB-induced melanogenesis by antagonizing cAMP/ PKA and ROS/MAPK signaling pathways. J Cell Physiol. 2019b;234(5):7330–40.
- Hwang E, Lin P, Ngo HTT, Gao W, Wang YS, Yu HS, et al. Icariin and icaritin recover UVB-induced photoaging by stimulating Nrf2/ARE and reducing AP-1 and NF-kB signaling pathways: a comparative study on UVB-irradiated human keratinocytes. Photochem Photobiol Sci. 2018;17(10):1396–408.
- Jiang L, Huang J, Lu J, Hu S, Pei S, Ouyang Y, et al. Ganoderma lucidum polysaccharide reduces melanogenesis by inhibiting the paracrine effects of keratinocytes and fibroblasts via IL-6/STAT3/FGF2 pathway. J Cell Physiol. 2019. https://doi.org/10.1002/jcp.28844.
- Kao CH, Bishop KS, Xu Y, Han DY, Murray PM, Marlow GJ, et al. Identification of potential anticancer activities of novel Ganoderma lucidum extracts using gene expression and pathway network analysis. Genomics insights. 2016:9:1–16.
- Khanna PK, Shivani HK, Gupta S, Chahal KK, editors. Evaluating Ganoderma lucidum strains for the production of bioactive components. Congress of the International Society for Mushroom Science; 2012.
- Kim JW, Kim HI, Kim JH, Kwon OC, Son ES, Lee CS, et al. Effects of ganodermanondiol, a new melanogenesis inhibitor from the medicinal mushroom manoderma lucidum. Int J Mol Sci. 2016;17:11.
- Kong SZ, Li DD, Luo H, Li WJ, Huang YM, Li JC, et al. Anti-photoaging effects of chitosan oligosaccharide in ultraviolet-irradiated hairless mouse skin. Exp Gerontol. 2018;103:27–34.
- Kubota A, Kobayashi M, Sarashina S, Takeno R, Okamoto K, Narumi K, et al. Reishi mushroom Ganoderma lucidum modulates IgA production and alphadefensin expression in the rat small intestine. J Ethnopharmacol. 2018;214: 240–3.
- Kumakura K, Hori C, Matsuoka H, Igarashi K, Samejima M. Protein components of water extracts from fruiting bodies of the Reishi mushroom Ganoderma lucidum contribute to the production of functional molecules. J Sci Food Agric. 2019;99(2):529–35.
- Lee C-H, Choi EY. Macrophages and inflammation. Journal of Rheumatic Diseases. 2018;25(1):11–8.
- Lee S, Bae I, Lee E, Min D, Park N, Choi S, et al. 1116 The extract of Ganoderma lucidum inhibits MMP-1 expression through suppression of ERK activation in UVB irradiated dermal fibroblast and skin equivalent model. J Investig Dermatol. 2018;138(5):S190.
- Lee YH, Kim JH, Song CH, Jang KJ, Kim CH, Kang JS, et al. Ethanol extract of Ganoderma lucidum augments cellular anti-oxidant defense through activation of Nrf2/HO-1. Journal of pharmacopuncture. 2016;19(1):59–69.
- Lin CC, Yu YL, Shih CC, Liu KJ, Ou KL, Hong LZ, et al. A novel adjuvant Ling Zhi-8 enhances the efficacy of DNA cancer vaccine by activating dendritic cells. Cancer immunology, immunotherapy: Cll. 2011;60(7):1019–27.
- Liu JQ, Lian CL, Hu TY, Wang CF, Xu Y, Xiao L, et al. Two new farnesyl phenolic compounds with anti-inflammatory activities from Ganoderma duripora. Food Chem. 2018;263:155–62.
- Liu Y, Zhang J, Tang Q, Yang Y, Guo Q, Wang Q, et al. Physicochemical characterization of a high molecular weight bioactive beta-p-glucan from the fruiting bodies of Ganoderma lucidum. Carbohydr Polym. 2014;101:968–74.
- Liu YJ, Du JL, Cao LP, Jia R, Shen YJ, Zhao CY, et al. Anti-inflammatory and hepatoprotective effects of Ganoderma lucidum polysaccharides on carbon tetrachloride-induced hepatocyte damage in common carp (Cyprinus carpio L.). Int Immunopharmacol. 2015;25(1):112–20.
- Montalbano G. Evaluation of the antimicrobial, anti-inflammatory, regenerative and wound healing properties of the bracket fungus ganoderma lucidum. Queensland University of Technology; 2018.
- Ren ZL, Wang CD, Wang T, Ding H, Zhou M, Yang N, et al. Ganoderma lucidum extract ameliorates MPTP-induced parkinsonism and protects dopaminergic neurons from oxidative stress via regulating mitochondrial function, autophagy, and apoptosis. Acta Pharmacol Sin. 2019;40(4):441–50.

- Sa-Ard P, Sarnthima R, Khammuang S, Kanchanarach W. Antioxidant, antibacterial and DNA protective activities of protein extracts from Ganoderma lucidum. J Food Sci Technol. 2015;52(5):2966–73.
- Sarnthima R, Khammaung S, Sa-Ard P. Culture broth of Ganoderma lucidum exhibited antioxidant, antibacterial and alpha-amylase inhibitory activities. J Food Sci Technol. 2017;54(11):3724–30.
- Shen C, Shen B, Shen G, Li J, Zhang FC, Xu P, et al. Therapeutic effects of nanogel containing triterpenoids isolated from Ganoderma lucidum (GLT) using therapeutic ultrasound (TUS) for frostbite in rats. Drug delivery. 2016; 23(8):2643–50.
- Siwulski M, Sobieralski K, Golak-Siwulska I, Sokół S, Sękara A. Ganoderma lucidum (Curt.: Fr.) Karst. health-promoting properties. A review. Herba Polonica. 2015;61(3):105–18.
- Smina TP, Nitha B, Devasagayam TP, Janardhanan KK. Ganoderma lucidum total triterpenes induce apoptosis in MCF-7 cells and attenuate DMBA induced mammary and skin carcinomas in experimental animals. Mutation Research/genetic Toxicology & Environmental Mutagenesis. 2017;813:45–51.
- Sone Y, Okuda R, Wada N, Kishida E, Misaki A. Structures and antitumor activities of the polysaccharides isolated from fruiting body and the growing culture of mycelium of Ganoderma lucidum. Agric Biol Chem. 1985;49(9):2641-53.
- Tian Y, Yang T, Yu S, Liu C, He M, Hu C. Prostaglandin E2 increases migration and proliferation of human glioblastoma cells by activating transient receptor potential melastatin 7 channels. J Cell Mol Med. 2018;22(12):6327–37.
- Wang C, Shi S, Chen Q, Lin S, Wang R, Wang S, et al. Antitumor and immunomodulatory activities of Ganoderma lucidum polysaccharides in glioma-bearing rats. Integrative cancer therapies. 2018;17(3):674–83.
- Wang XC, Xi RJ, Li Y, Wang DM, Yao YJ. The species identity of the widely cultivated Ganoderma, 'G. lucidum' (Ling-zhi), in China. PLoS One. 2012; 7(7):e40857.
- Wei B, Zhang R, Zhai J, Zhu J, Yang F, Yue D, et al. Suppression of Th17 cell response in the alleviation of dextran sulfate sodium-induced colitis by Ganoderma lucidum polysaccharides. J Immunol Res. 2018;2018:2906494.
- Wu JG, Kan YJ, Wu YB, Yi J, Chen TQ, Wu JZ. Hepatoprotective effect of ganoderma triterpenoids against oxidative damage induced by tert-butyl hydroperoxide in human hepatic HepG2 cells. Pharm Biol. 2016;54(5):919–29.
- Xia Q, Zhang H, Sun X, Zhao H, Wu L, Zhu D, et al. A comprehensive review of the structure elucidation and biological activity of triterpenoids from Ganoderma spp. Molecules. 2014;19(11):17478–535.
- Xiao C, Wu Q, Zhang J, Xie Y, Cai W, Tan J. Antidiabetic activity of Ganoderma lucidum polysaccharides F31 down-regulated hepatic glucose regulatory enzymes in diabetic mice. J Ethnopharmacol. 2017;196:47–57.
- Yang Z, Wu F, He Y, Zhang Q, Zhang Y, Zhou G, et al. A novel PTP1B inhibitor extracted from Ganoderma lucidum ameliorates insulin resistance by regulating IRS1-GLUT4 cascades in the insulin signaling pathway. Food Funct. 2018;9(1):397–406.
- Yang Z, Zhang Z, Zhao J, He Y, Yang H, Zhou P. Modulation of energy metabolism and mitochondrial biogenesis by a novel proteoglycan from Ganoderma lucidum. RSC Adv. 2019;9(5):2591–8.
- Yu HZ, Liu YF, Zhou S, Zhang Z, Wang C, Tang QJ, et al. Difference of chemical components in fruiting body, mycelium and spore powder of Ganoderma lingzhi. Journal of Food Science & Biotechnology. 2016;35(08):823–7.
- Zeng Q, Zhou F, Lei L, Chen J, Lu J, Zhou J, et al. Ganoderma lucidum polysaccharides protect fibroblasts against UVB-induced photoaging. Mol Med Rep. 2017;15(1):111–6.
- Zhang H, Jiang H, Zhang X, Yan J. Amino acids from Ganoderma lucidum: extraction optimization, composition analysis, hypoglycemic and antioxidant activities. Curr Pharm Anal. 2018a;14(6):562–70.
- Zhang K, Liu Y, Zhao X, Tang Q, Dernedde J, Zhang J, et al. Anti-inflammatory properties of GLPss58, a sulfated polysaccharide from Ganoderma lucidum. Int J Biol Macromol. 2018b;107:486–93.
- Zhang L, Ding Z, Xu P, Wang Y, Gu Z, Qian Z, et al. Methyl lucidenate F isolated from the ethanol-soluble-acidic components of Ganoderma lucidum is a novel tyrosinase inhibitor. Biotechnol Bioprocess Eng. 2011; 16(3):457–61.
- Zhao C, Fan J, Liu Y, Guo W, Cao H, Xiao J, et al. Hepatoprotective activity of Ganoderma lucidum triterpenoids in alcohol-induced liver injury in mice, an iTRAQ-based proteomic analysis. Food Chem. 2019;271:148–56.
- Zheng L, Wong YS, Shao M, Huang S, Wang F, Chen J. Apoptosis induced by 9,11dehydroergosterol peroxide from Ganoderma Lucidum mycelium in human malignant melanoma cells is Mcl1 dependent. Mol Med Rep. 2018; 18(1):938–44.

Zhou XW, Su KQ, Zhang YM. Applied modern biotechnology for cultivation of Ganoderma and development of their products. Appl Microbiol Biotechnol. 2012;93(3):941–63.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

- fast, convenient online submission
- thorough peer review by experienced researchers in your field
- $\bullet\,$ rapid publication on acceptance
- support for research data, including large and complex data types
- gold Open Access which fosters wider collaboration and increased citations
- maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

